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INTRODUCTION
 Seasonally snow covered areas of the mountain ranges are important components in the global hydrologic

cycle. Therefore monitoring the extent of the seasonal snow cover and the accumulation and ablation zones of
glaciers is essential for understanding of the global hydrologic cycle, one of the objectives in the study of the Earth
sciences. Seasonal snow cover is the major source of the fresh water supply over wide areas of the mid-latitudes.
They account for a significant fraction of the fresh water supply. In the western U.S., for example, about 80 per
cent of the total runoff comes from melting snow. Measurement of the amount of water stored in the snowpack and
forecasting the rate of melt are thus essential for managing the water supply and flood control systems.

The spatial distribution of a snow covered area is a crucial input to models of hydrology and climate in
alpine and other seasonally snow covered areas [1,2]. Snow covered area (SCA) is necessary to parameterize
energy balance calculations in mesoscale and general circulation models [3], to initialize and validate distributed
snowmelt modeling efforts [4], and to estimate snow water equivalence from observations of snow-cover depletion
[5]. Because of rough, irregular topography and wind redistribution, all these attributes vary spatially and
temporally over alpine areas at both coarse and fine scales. However, these important snow parameters have not
been generally used in snowmelt modeling because they are difficult and costly to measure routinely over large
areas.

The Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) [6] flies on a NASA ER-2 aircraft at
an altitude of 20 km and has a spatial resolution about 20 m over an 11-km swath. It is unique optical sensor that
delivers calibrated images of the upwelling spectral radiance in 224 contiguous spectral bands in the spectral region
from 0.4–2.5 µm. Its spectral resolution is 10 nm. AVIRIS has been widely used in the realm of the Earth science
remote sensing [7] including atmospheric science, atmospheric correction, oceanography, ecology, and geology.

In addition, the ER-2 carries a variety of film camera. Most of the cameras and lenses are routinely
calibrated for precision photogrammetry, and numerous film types are in use. Wild Heerbrugg RC-10 mapping
cameras with a 9 x 9 inch (22.9 x 22.9 cm) image format are flown on virtually every ER-2 Earth imaging mission.
They provide the color infrared photo with ground coverage 15 x 15 km and a nominal resolution of 1.5 to 4 m. The
high resolution spectra image data (AVIRIS) and high resolution spatial color infrared photo acquired
coincidentally on the ER-2 mission provide unique data sets for snow mapping algorithm development and
validation.

The objective of this study is to develop an automatic snow mapping algorithm at sub-pixel resolution for
Advanced Spaceborne Thermal Emission And Reflection (ASTER). It is an EOS-A facility instrument to be
launched in this year. We have collected a huge amount of AVIRIS image data, from which ASTER spectral
measurements can be simulated. The high resolution color infrared photo (1-4 m) taken simultaneously as AVIRIS
image data can be used to access the snow covered area as the ground truth. By evaluation of the current techniques
for selecting spectral endmembers and the effects of terrain on linear unmixing process, an unsupervised snow
mapping algorithm has been developed by taking advantages of each technique in selecting spectral endmembers.
Through examples, we demonstrate 1) effects of terrain on linear unmixing, 2) development of the unsupervised
sub-pixel snow mapping algorithm, and 3) the techniques used to access the ground truth and validation of ASTER
snow mapping algorithm using simulated image data from AVIRIS.



2

BACKGROUND
Visible and near-infrared sensors have been used extensively to delineate areas of snow and ice cover in

terms of binary classification (i.e., snow or non-snow for a pixel) through supervised [1,8-9] and unsupervised
classification [2, 10-11]. While snow is extremely bright in the visible wavelengths, it is dark in the short wave
infrared (SWIR) wavelengths.

While alpine regions may have large areas of open snow above the tree line, patches of windblown rock or
soil and shrub vegetation are also common. The spectral contributions of different materials within the field of view
of the sensor result in “mixed pixels”. The problem is severe over rugged terrain, where extreme variations in snow
cover, vegetation type, canopy density, and lithology occur over small horizontal distances, leading to mis-
classification of snow covered areas. Due to complexities of the Earth’s surface, especially in rugged terrain and
forest regions,  large errors can be expected when using moderate to coarse resolution imagery to map snow
covered areas at a regional scale.

Spectral mixture analysis has been shown to be well suited for analysis of spectral image data [12]. A
spatial mixture can either be a linear or a non-linear mixture of reflectance spectra of scene materials; the
difference depends on the manner in which photons scatter and interact with the materials in the pixel. In the case
of linear mixing model, the sensor response for an image pixel is expressed as linear combination of the fraction
quantity of each component present in the pixel plus error. Thus the pixel spectrum holds information about both
the spectral signature and the abundance of a component. In a multispectral image each pixel can be modeled as a
linear combination of components identified for that image. Such image components are termed “endmembers” and
they are thought to be representative of a finite set of spectrally unique ingredients in the image. In terms of remote
sensing, it can be represented as

With constrains of

Where i and j represent spectral band and endmember component in the linear unmixing. R and Re are surface
reflectance and endmember reference spectra, and  f is fraction of each component. By finding minimum error ε,
the fraction quantity and the spectral signature of components are determined in terms of the best fit to the
measured spectral signature at a given pixel. In this way, snow cover can be mapped at sub-pixel scale and result in
a fractional classification (i.e., fraction of snow cover for a pixel).

Recently, the linear spectral unmixing techniques have been applied to snow covered area classifications
using AVIRIS [13-15], TM [16], and AVHRR [17]. The major difference in these studies is the techniques in
selecting spectral endmembers.

1) Nolin [13-14] used 17 spectral bands with the scene manually selected spectral endmembers were
obtained from the mean values of spectral reflectance from training sites for each target. It may be
possible to apply the current unmixing techniques to map snow at small areas where the spectral
signatures of targets have a little variation. However, great variations of spectral signatures of each
target are expected at regional scales because of changes in physical properties of targets, terrain
gradient and atmospheric properties (a function of elevation).

2) An unsupervised spectral unmixing algorithm, with a convex geometry technique, was used for
Thematic Mapper data estimates of snow-covered areas from the six reflective TM bands [16] and
AVHRR [17].  The algorithm was based on classification trees to fragment the data set along
boundaries of distinct land and cloud cover classes. The dimensionality and number of endmembers
for each image fragment are determined from principal component analysis. Each fragment is
unmixed, with all endmember sets on its convex hull, and the best set is selected. Endmember spectra
are converted to surface reflectance using an atmospheric radiative transfer code, and the endmembers
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are identified by automated search of a spectral library.  The final snow cover estimate is a composite
of the best mixture model per pixel, adjusted for endmember impurity.

3) Painter[15] used the multi-snow endmembers simulated by the two stream radiative transfer model
and multi-nonsnow endmembers obtained from field spectral measurements as described by the multi-
endmember unmixing technique [18]. The study showed that the accuracy of the estimation of snow
fraction can be improved by including multiple snow spectral endmembers to account for the effect of
snow grain size difference.

Each technique in selection of spectral endmembers has its own advantages and disadvantages, as will be discussed
in next section.

EFFECTS OF TERRAIN ON LINEAR UNMIXING

In contrast to images obtained from a flat surface, the images obtained in alpine regions show a more
complicated geometric mapping. In many cases, the image data we obtained is the surface apparent reflectance after
the correction of atmospheric effects, such as AVIRIS, MODIS and ASTER.  The derived surface apparent
reflectance is usually a function of local solar illumination angle, surface orientation, and sensor viewing geometry
that affects imaged pixel size, in addition to factors that affect the surface spectral reflectance. In alpine regions, the
great variations in elevation and surface orientation from pixel to pixel consistently result in a great variations in the
derived surface apparent reflectance. This variation, caused by the topographic effects that are unrelated to the
spectral reflection properties of surface cover type, has a great impact on classification accuracy and on the spectral
linear unmixing.

Let’s consider a terrain correction factor, Tc, that is needed to correct the surface apparent reflectance to
real reflectance on a surface slope at a given imaged pixel. The surface apparent reflectance R’(i,θ) with

illumination θ  is

If the spectral endmembers have no terrain effects and have the same illumination, such as those obtained from a
model or field spectral measurements, the estimated fractions have properties of

As we can see, the constrains in (2) have been broken. The estimated f’(j) for the dominant component could be

greater than 1 and sum of the estimated fractions may not equal to 1. This sum is equal to terrain calibration factor
Tc, instead. This indicated that if we put (2) as constrains when applying linear unmixing, we actually excluded the
real spectral endmembers. Instead, we selected a wrong combination to explain the measured spectral signals.

A commonly used technique to reduce such an effect is to normalize the estimated fractions with their

sum:

Since Tc is a constant, it will be canceled out by normalization.

However,  in the case that the spectral endmembers are selected from a scene, such as using either
manually selected average spectral endmembers for each component or the convex geometry technique, the
reference spectral endmember for a given component j used in unmixing process has the terrain effect:

Then, the estimated fractionts are
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They also break the constraints of (2).

We can see that if the selected reference spectral endmembers for each component have a similar
magnitude with the pixel to be evaluated, a small error can be expected. Otherwise, the opposite is true - a large
error will be expected. The manually selected average spectral endmembers have fewer terrain effects on the
spectral unmixing since they are generally selected over a relative flat surface and averaged over many pixels from
several training sites. However, this technique does not account for spectral variability in each component.  On the
other hand, the technique using convex geometry has great terrain effect on spectral unmixing. This is because the
spectral endmember for each component is selected at the corner of convex hull. It represents the extreme case for
the spectral signature of that component and may have a large terrain effect.  In addition, the normalization process
of (5) also failed since the terrain effects in each component are different and can not be canceled out in the
normalization.

Furthermore, it also has a great impact on spectral unmixing if the reference endmembers were obtained at
a different solar illumination angle from the pixel to be evaluated. To demonstrate this effect, Figure 1 shows the
two-stream radiative transfer model [19-20] simulated ratio of two illuminations at 60°/20° for three different snow
conditions. The solid, dotted and dashed curves represent that for fine-grain/thick, medium-grain/thick, and
medium-grain/thin snow conditions, respectively. The x-axis is wavelength in µm.

Figure 1. The ratio of reflectance at 60° to 20° illumination simulated for three snow conditions.

We can see that if the reference spectral endmembers were obtained at different solar illumination angles from the
pixels to be evaluated, we will need an illumination angle correction factor to justify the difference. It is clear that
this illumination angle correction factor will depend upon the different target, the difference in illumination, and the
wavelength. As a result, the sum of the estimated fractions will not equal 1. The normalization process will also fail
to estimate real fractions correctly.

PROPOSED TECHNIQUES

The analyses of terrain effects on spectral unmixing in the last section indicate that each technique used to
select the reference spectral endmembers has its own advantages and disadvantages, when it applied spectral
unmixing in mountainous areas.

1. Scene-selected spectral endmembers by either manually averaging from training sites or using convex
geometry technique

• Advantages: less sensitive to system noise, error in atmospheric correction, local spectral
endmembers

• Disadvantages: terrain and illumination effect in the selected endmembers

2. Spectral library by either field measurements or model simulation

• Advantages: the normalization can be used to reduce terrain effect
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• Disadvantages: limited available data, affected by system noise, illumination, and difference
between model predications and measurements

By taking advantage of each approach, we developed a technique for automatic selection of local reference spectral
endmembers. This technique mainly includes four steps:

Step 1: Level-0 classification: First perform an initial selection of possible snow, snow-free, and snow mixed pixels.
It is acknowledge-based regression tree classifier. Then, we further classify these initially identified snow mixed
pixels by a spectral-shape-matching classification, using the snow and snow-free spectral endmembers.

Step 2: Merge the initial selected snow, snow-free endmembers and establishing a look up table for snow mixed
pixels. The similar spectral signatures in each class - snow, snow-free, and snow mixed pixels are grouped together
using the criteria 1) the difference at each wave length is less than 0.02 and 2) the overall RMSE from all wave
lengths is less than 0.015. Then, we averaged over those spectral signatures in each group to determine one spectral
endmember signature in that class. The average process can also reduce the extreme cases in terrain effect.

Step 3: Identify local pure vegetation and bare surface spectral endmember signatures by performing multi-
endmember unmixing on the selected snow-free endmembers using the spectral library obtained from field
measurements. This spectral library contains more than 300 field spectral measurements, including different types
of rock, soil, trees, and short vegetation. In this process, if RMSE is less than 0.015 for a snow-free endmember
from multi-endmember unmixing, the spectral signatures from the library of each component will be selected and
grouped into the pure vegetation and bare surface endmembers. If RMES is greater than 0.015 when it does not fit
well by the measurements from spectral library, we identify the new local endmember spectral signature at a given

wave length i by

if the estimated fraction of that component is greater than 50%.  In above equations, the newly determined
endmember signature has a reduced terrain effect since the measurement R(i) and the estimated fraction f ’ all have

same terrain effect in it and ratio process will cancel it out.

Step 4: Perform multi-endmember unmixing on the snow mixed pixel look-up table and then assign snow fractions
to all pixels in that group. The advantage of using look-up tables for snow mixed pixels is that they can significantly
reduce the computing time. In fact, they can generally reduce CPU time by a few hundred times at cost of only
slightly reducing accuracy.

ASSESSMENT OF SNOW COVER GROUND "TRUTH"

In an attempt to develop and verify a snow-mapping algorithm, the most common problem is the lack of
sufficient ground truth data. Most of snow mapping algorithms were developed and validated with only a limited or
“user-supplied” set of ground truth data that covers only very small portion of snow covered environmental
conditions. This type of technique cannot provide any information on evaluation of the algorithm performance and
assessment in the accuracy of classification results where the ground truth was not available.  It is clear that the key
to validation of remote sensing snow extent product is to obtain a sufficient amount of the ground truth data which
covers different background targets, terrain, atmosphere, solar and sensor viewing geometry.

Our approach to obtaining the ground truth for snow covered areas is to use the color infrared photo. It
covers about 15 km x 15 km. This film, originally referred to as camouflage-detection film, differs from
conventional color film because its emulsion layers are sensitive to green, red, and near-infrared radiation (0.5 µm
to 0.9 µm). Used with a yellow filter to absorb the blue light, this film provides sharp images and penetrates haze at
high altitudes. The color infrared photo can be digitized to three-band digital image with a pixel resolution from 1.5
to 4 m. Using the four band (near-infrared, green, red and near-infrared/green) digital color infrared photo, we
classified snow-cover with a supervised classification technique, in which the minimum distance technique was
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employed. The classes include snow, vegetation, water and bare ground. The snow is easily discriminated from the
other targets because of its high reflectance, in contrast the water has low reflectance. The training sites of
vegetation are easily selected because its high values in near-infrared and near-infrared/green bands. After
obtaining the classification result, we co-registered the classification image with AVIRIS images to produce the
fractional snow-covered area image.

It is evident that there are differences in the resolutions between the digital color infrared photo and
AVIRIS image data because the formation of the image data differs significantly. AVIRIS image data is formed
with the highest resolution at nadir along the flight line (a line). Its resolution decreases as the distance, between the
sensor and imaged pixel, increase in cross track directions. On the other hand, The color infrared photo has the
highest resolution at the nadir (a point) while the photo is taken. The resolution also decreases as the distance
increases, but in all directions. If the imaged area is a flat surface, the primary cause of the differences in the image
resolutions can be modeled using the information on aircraft tilt angle and flight height.  However, terrain height in
mountainous areas also results in resolutions that vary significantly. It is difficult to model these differences
between these two data images due to the lack of high resolution and accurate Digital Elevation Model (DEM). In
addition, another error source may be introduced during the process of scanning the color infrared photo. Due to
the irregular change in the ratio of resolutions between them, the tradition used co-register technique – using tie
points also provides inaccurate result.

In order to access large amounts of the accurate ground truth for snow covered areas, the technique we
used to auto-co-register the high resolution digitized color infrared photo data to AVIRIS image data is the splint-
window auto-correlation technique.  We first divided the AVIRIS image data into the reference window boxes that
are generally larger than 20 x 20 pixels. By varying the sizes and the image coordinates of the digitized color photo
window box, the match-location and the resolution ratio between these two data at each window box can be
determined by calculating the maximum auto-correlation value. Using these parameters, the digitized color photo
can be automatically co-registered to AVIRIS image data where the average value of the pixels within the AVIRIS
resolution is used to produce the co-registered brightness image. Furthermore, we also saved these parameters of
each window box as an output file that can be used to co-register the classification image where the fractional
snow-covered area image is produced as the ground truth.

We have collected more than 300 AVIRIS scenes with snow since 1994 over the different regions in North
America. They covers a wide range of solar illumination, atmospheric, terrain, and snow conditions. Table 1 below
summarizes the collected AVIRIS image data. We can access large amount of the ground truth data by using these
digitized photo images of very high spatial resolution along with spectral information from AVIRIS image data.

Location Sierra Nevada
(U.S)

Cascades
(U.S)

Rocky Mt.
(U.S)

Boreas Forest
(Canada)

Total

AVIRIS 198 68 89 12* 367

 Table 1: The collected AVIRIS airborne image data. * Indicates that the color infrared photo is not available right
now.

EXAMPLES OF ALGORITHM PERFORMANCE AND ITS VALIDATION

To demonstrate the algorithm performance and its validation, we show an example using the simulated
ASTER 9 band visible-Infrared image data from AVIRIS scenes. Surface apparent reflectance images of AVIRIS
were derived using the approach described by [21]. This approach rely on the atmospheric models of the
MODTRAN3 radiative transfer code to generate a series of look-up table for an AVIRIS scene collected at a
specific latitude and longitude on a specific date. The water vapor, surface pressure height, and aerosol optical
depth were characterized to use in the surface spectral reflectance calculation. The ASTER's spectral response
function for each band was convolved with AVIRIS data and re-sampled to 30-m resolution to generate the
simulated ASTER visible-Infrared image data.

Figure 2 compares the snow covered maps derived from the simulated ASTER image data on left, with one
derived from high-resolution , infrared color photos on right. The brightness is proportional to snow fraction at each



7

pixel. The black regions are snow-free. This example represents a case where snow cover is characterized as more
of a continuum in spatial distribution. The major part of snow cover is fully covered by snow. The mixed pixels
mainly occur at low elevation. At high elevation regions, the snow-mixed pixels are mainly distributed at high
surface relief or large slope areas. In our algorithm of steps 1 and 2, some 783 snow-free endmembers were initially
selected. By running step 3, 551 of these plus 69 bare surface and vegetation spectral endmembers were finally
identified as the reference snow-free endmembers for the multi-endmember snow unmixing, in which 17 % and 8
% of these endmembers are identified from the spectral library data for bare surface and vegetation, respectively.
The remaining ones are identified as local endmembers from the scene itself. From scene to scene, these values
could vary greatly due to the limited available field spectral measurements. Identifying local spectral endmembers
is essential for insuring the accuracy of snow fraction estimation. For snow, 872 endmembers were selected through
steps 1 and 2; these cover a wide range snow and terrain conditions. There were 736 classes determined through
steps 1 and 2 for the look-up table of the mixed pixels. It is 0.8 % of total mixed pixels. To compare the accuracy of
the ASTER-derived snow map, we performed several tests. The first test was to check errors in mis-classification of
level-0 classifiers. In this example, 3.8 % of the snow-free pixels were mis-classified as being snow mixed pixels.
Some 1.3 % of the snow mixed pixels were mis-classified as being snow-free.  The relative error for estimating
total snow covered area, as the second test, is 1.7 %. The RMSE for snow mixed pixels is 8.4 %. In computation
aspect, it took about 38 CPU hours to generate the snow map on a 500 MHz alpha workstation if we ran all of the
mixed pixels by the multi-endmember unmixing. However, it only took 18 minutes by using look-up table approach.

The cost is that the accuracy was reduced from 6.9 % to 8.4 % in snow fraction estimation.

Figure 2. The comparison of  the snow covered maps derived from the simulated ASTER image data on left, with
one derived from high-resolution , infrared color photos on right. The brightness is proportional to snow fraction at
each pixel.

DISCUSSION

 Accessing the ground truth of snow covered area is a key component for snow mapping algorithm
development and validation. The commonly used techniques are either user-supplied or a low elevation aerial
photo.  The former has no means of validation. The later provides a high-resolution photo within a few meters.
However it may be obtained at different times with the satellite or airborne data to be evaluated, which results in
different solar illumination geometry. The ground truth for snow covered area might have changed significantly.
Furthermore, only a small portion of the low elevation photo can be used to access the ground truth, even if the
photo and satellite or airborne data were taken at nearly the same time. This is due to the elevation difference
between these two instruments, which causes geometric distortion in a resolution and in sensor viewing geometry.
The former results in a co-registering difficulty. The later results in that a low elevation photo that cannot represent
what the satellite “sees”, especially in alpine and forest regions where terrain and trees may block the view of the
camera. Therefore, only a small portion, -- that with a close-to-nadir view of the low elevation photo -- can be used
for accessing ground truth. In contrast, the advantages of using color infrared photo on board ER-2 are: 1) no
difference between the color infrared photo to be used to obtain the ground truth data and the image data (AVIRIS)
to be used to simulate the satellite measurements since they are taken simultaneously, 2) similar solar illumination
and sensor viewing geometry since the instruments are on the same platform, and 3) covers large area (AVIRIS
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coverage).  With high spectral measurements of AVIRIS, most of the visible infrared optical satellite measurements
can be simulated with high accuracy even before launching of the satellite. Therefore, AVIRIS image data and the
color near-infrared photo provide a unique tool for snow mapping algorithm development and validation.

The current techniques on estimation of snow fraction by linear unmixing mainly differ in the methods of
selecting the reference spectral endmembers for the unmixing process. As we have demonstrated in this study,
terrain has great impact on unmixing process. Each technique has its own advantages and dis-advantages. The
approach presented in this study is based on compromising the advantages and disadvantages of each current
technique. The tested results indicate the snow cover can be estimated by ASTER image data at sub-pixel
resolution with high accuracy. It will provide the high accurate snow maps for predicting snow-melting runoff and
hydrological applications.
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