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Abstract

We present an algorithm for subpixel material identi�cation that is invariant to the illumination and

atmospheric conditions. The target material spectral reectance is the only prior information required

by the algorithm. A target material subspace model is constructed from the reectance using an image

formation model and a background subspace model is estimated directly from the image. These two

subspace models are used to compute maximum likelihood estimates for the target material component

and the background component at each image pixel. These estimates form the basis of a generalized

likelihood ratio test for subpixel material identi�cation. We present experimental results using AVIRIS

imagery that demonstrate the utility of the algorithm for subpixel material identi�cation under varying

illumination and atmospheric conditions.

1 Introduction

The recent development of airborne imaging spectrometers represents a major advance in remote sensing

capability. For example, the Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) sensor [11]

acquires over 200 spatially registered images, taken over the spectral range 0.4�m-2.5�m. The sensor

operates at approximately 20km above sea level. Each image pixel therefore covers an approximately

20m � 20m area. Often, the observed spectrum of a pixel is a mixture of spectra from several di�erent

materials within the spatial coverage of the pixel. The problem of subpixel detection requires identifying

which pixels in an image contain a speci�ed material. Since at subpixel scale, it is not possible to

detect the material spatially, we must rely on spectral information. Fortunately, many materials exhibit

characteristic spectral features that can be exploited for recognition [2].

A mixed pixel is a pixel that contains more than one material. Both linear and nonlinear models

have been proposed to describe mixed pixels. In a linear model, a mixed pixel is represented as a linear

combination of component or endmember spectra [6]. Since Johnson et al. [5] showed that nonlinear

mixing [3] can be \linearized," recent research e�orts have focused on developing detection algorithms

using a linear model [1] [4] [7].

Many subpixel detection algorithms [1] [4] assume that the component spectra are known a priori.

However, this prior knowledge is often di�cult to obtain. Alternatively, appropriate spectral prototypes

can be selected from an image to serve as component spectra [7]. It is usually di�cult, however, to select
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a single spectral prototype for a material since sensor spectral radiance is a�ected by atmospheric and

geometric conditions that can vary spatially and temporally.

In this paper, we present an algorithm for subpixel detection in hyperspectral images. No prior infor-

mation about the component spectra is assumed. The input to the algorithm is the spectral reectance

function of the material to be identi�ed. Our approach is based on the use of linear subspaces to model

the component spectra. We consider each pixel as a sum of two vectors, one from the target subspace [9]

and the other from the background subspace. The target subspace contains material information over

atmospheric and geometric conditions. The background subspace is estimated from the image.

2 Image Modeling

2.1 Linear Spectral Mixing

In a linear spectral mixing model, a mixed pixel is represented as a linear combination of component

spectra. Let l denote the number of spectral bands and let t and � denote the target material spectrum

and the fraction of target material. A mixed pixel, denoted by an l-dimensional vector y, can be described

by

y = �t +
mX
i=1

�iei + n (1)

where m is the number of background component spectra, ei and �i are the ith component spectrum

and the fraction of the ith component spectrum, and n is an l-dimensional noise vector. The subpixel

detection problem is to determine the presence or absence of the target signal �t. Our approach is based

on the use of linear subspaces. We assume that the background spectra span some subspace of the real

vector space <l and that the target material spectrum lies in a di�erent subspace within <l.

2.2 Target Subspace

Targets are often modeled using a single spectrum. However, since the sensor spectral radiance for

a material is a�ected by the atmospheric and geometric conditions, a target spectral signature can

have signi�cant variability. A more general method is to utilize a target subspace that accounts for

atmospheric and geometric variation. Slater and Healey [9] showed that the set of sensor spectral

radiance functions for a material can be well approximated by a small number of basis functions. We

will use the basis functions generated using this approach to de�ne a target subspace. Let T be an

l � s matrix containing the orthonormal basis vectors that span the target subspace. Because this target

subspace contains material information over atmospheric and geometric conditions, the same target

subspace can be applied to any image that may contain the target.

2.3 Background Subspace

In this subsection, we describe a method for determining the background subspace from an image.

Consider an image region of size p� q with l spectral bands. We construct a matrix Y of size l � pq,

where each column contains a hyperspectral pixel in the region and pq � l. The dimensionality of Y

can be reduced using the singular value decomposition [10]

Y = UDV
T (2)



where the columns of U are the eigenvectors of Y Y T , the columns of V are the eigenvectors of Y TY ,

and the diagonal matrix D contains the singular values. If yi denotes column i of Y and ui denotes

column i of U , then each pixel yi can be approximated by

byi = rX
j=1

(yTi uj)uj (3)

where r < l is the reduced dimensionality. Let �j denote the jth singular value. For a given r, the

squared error

�r =

pqX
i=1

jjyi � byijj2 = lX
j=r+1

�2j (4)

is minimized by selecting the uj with the r largest singular values. We will assume that the singular

values are sorted in descending order.

The �rst M background basis vectors uj ; 1 � j � M , will always be included in the background

subspace to ensure that the squared error is less than a fraction, tM , of the total variance. The parameter

M is set to the smallest integer such that

�M � tM

lX
j=1

�2j (5)

It is generally not advantageous to include too many basis vectors in the background subspace. The

reason for this is that each background vector that is not orthogonal to the target subspace increases the

overlap between the target and background subspaces. For this reason, a maximum of N basis vectors

are used, N �M , where the parameter N is the smallest integer such that

�N � tN

lX
j=1

�2j (6)

for a threshold tN . We include selectively background basis vectors in the range uM+1; : : : ;uN that are

not similar to the target subspace. We de�ne the similarity of a background basis vector uj to the target

subspace T by the length of its projection onto T

�j = jjTTuj jj (7)

If uj is orthogonal to T , then �j = 0. We include uj in the background subspace if �j is less than a

threshold, t�. Therefore, the background subspace matrixB of size l� r, where M � r � N , is given by

B =
�
b1 � � � bM bM+1 � � � br

�
where for 1 � j �M , bj = uj and for M + 1 � j � r, the bj are selected from the set fuM+1; : : : ;uNg

such that �j � t�.

3 Invariant Subpixel Detection

3.1 Maximum Likelihood Estimation

We assume that the columns of B and T are linearly independent and that r + s < l. Let A = [B;T ]

denote the matrix formed by concatenating matrices B and T in that order. A pixel y can be described



by

y = B�+ T� + n = A

�
�

�

�
+ n (8)

where � and � are r-dimensional and s-dimensional parameter vectors. Thus, B� and T� each speci�es

a particular vector in the respective subspaces. If n consists of statistically independent, identically

distributed Gaussian random variables, then the least squares estimates of the parameters are the same

as the maximum likelihood estimates. The least squares estimates for the parameters � and �, denoted

by b� and b�, are given by " b�b�
#
= A+y (9)

where A+ is the pseudoinverse of A. The estimation of the parameter vectors is simpli�ed if A is

transformed into a matrix Q with orthonormal columns using the Gram-Schmidt process. Then,

B b�+ T b� = AA
+
y

= QQTy (10)

3.2 Generalized Likelihood Ratio

We pose the detection problem as a hypothesis test between the hypotheses

H0 : y = B�+ n

H1 : y = B�+ T� + n

where � and � are unknown parameter vectors and n is a zero mean Gaussian random vector with

covariance �. The decision rule that determines which hypothesis produced the data is the likelihood

ratio

�(y) =
p1(y=H1)

p0(y=H0)
(11)

where pi(y=Hi) is the conditional probability density of the observed y given that hypothesis Hi is

true. Under hypothesis H0, y is Gaussian distributed with mean B� and covariance �, or p0(y=H0) =

N (B�;�). Under hypothesis H1, p1(y=H1) = N (B� + T�;�). The generalized likelihood ratio is

obtained when the unknown parameters are replaced by their maximum likelihood estimates. The

parameters are estimated separately for each hypothesis.

3.3 Noise Estimation

For the experiments reported in this paper, we assumed that � = �2I . In future work, we will examine

the use of more general noise models. For an l-dimensional Gaussian random vector with covariance

�2I, the maximum likelihood estimate of �2 under hypothesis i is given by [8]

b�2i = jjy�cmijj2

l
(12)

where jj � jj denotes the vector length and cmi is the maximum likelihood estimate of the mean under

hypothesis i. Substituting (12) into (11) and then raising to the 2

l
power yields the generalized likelihood

ratio e�(y) = (�(y))
2

l =
jjy�cm0jj2

jjy�cm1jj2
(13)



(a) (b)

Figure 1: Cuprite mining district: (a) band 120, (b) labeled mineral pixels

Since the maximum likelihood estimate of the mean is also the least squares estimate of the mean,cm0 = BBTy and cm1 is given by (10). The generalized likelihood ratio is therefore given by

e�(y) = yT (I �BBT )y

yT (I �QQT )y
(14)

The larger the ratio is, the more likely that the pixel contains the target material. We can also inter-

pret (14) as the ratio of �tting errors.

4 Experimental Results

We veri�ed the subpixel detection algorithm presented in this paper using AVIRIS imagery. Figure 1(a)

shows a region of the mining district in Cuprite, Nevada. This AVIRIS image was acquired in May 1994.

The size of this image is approximately 200� 300 pixels. In this experiment, we considered 3 minerals

having the sample spectral reectance plotted in �gures 2 through 4. These reectance functions were

obtained from the USGS Digital Spectral Library (http://speclab.cr.usgs.gov/spectral-lib.html).

For this experiment, we used spectra from the image to build a set of basis functions for each of the

minerals. Because mineral spectral variability is limited in this region of the image, s = 2 basis functions

were su�cient to represent the target subspace. We computed the background subspace as described

in section 2.3. There are three parameters in the background model: tM and tN that determine the

minimum and maximum numbers of background basis vectors, and t� that determines the allowable
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Figure 2: Sample reectance function for a mixture of alunite/silica
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Figure 3: Sample reectance function for alunite
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Figure 4: Sample reectance function for kaolinite

overlap between a basis vector and T . For this image, we set tM = tN = 3:69 � 10�5. Because

tM = tN , the parameter t� is irrelevant. For each mineral, we obtained a likelihood map by computing

the likelihood ratio according to (14) for each pixel in the region. A pixel is classi�ed as belonging to

the mineral that has the highest likelihood ratio among the 3 likelihood values. The classi�cation results

are shown in �gure 1(b). The white pixels are alunite, the light gray pixels are kaolinite, and the dark

gray pixels are a mixture of alunite and silica.

5 Summary

We have presented an algorithm for subpixel material identi�cation that is invariant to the illumination

and atmospheric conditions. We consider each pixel as a sum of two vectors, one from the target

subspace and the other from the background subspace. For each image region, we compute a basis

that represents the background subspace. The target subspace is computed from the spectral reectance

function and contains material information over atmospheric and geometric conditions. We have included

experimental results using AVIRIS imagery that demonstrate the utility of the algorithm for subpixel

material identi�cation.
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