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INTRODUCTION

The rapid development of sophisticated imaging spectrometers and resulting flood of imaging
spectronwtry data ~ prompted a rapid parallel development of spectral-information extraction technology. Even
though these extraction techniques have evolved along different lines (band-shape fitting, endmember unrnixing,
near-infkaredanalysis, neural-network fitting, and expert systems to name a few), all are limited by the
spectrometer’s signal to noise (MN) and spectral resolution in producing usefhl information. This study grew
fkom a need to quantitatively determine what effects these parameters have on our ability to differentiate between
mineral absorption features using a band-shape fitting algorithm. We chose to evaluate the AVIRIS, HYDICE,
MIVIS, GERIS, VIMS, NIMS, and ASTER instruments because they collect data over wide S/N and spectral-
resolution ranges. T%estudy evaluates the performance of the Tricorder algorithm (Clark and Swayze, this
volume) in diffbrentiating between mineral spectra in the 0.4-2.5 ~ spectral region. The strength of the
Tricorder algorithm is in its ability to produce an easily understood comparison of band shape that can
concentrate on small relevant portions of the spectra, giving it an advantage over most unmixing schemes, and in
that it need not spend large amounts of time reoptimizing each time a new mineral component is added to its
reference library, as is the case with neural-network schemes. We believe the flexibility of the Tricorder
algorithm is unparalleled among spectral-extraction techniques and that the results born this study, although
dealing with minerals, will have direct applications to spectral identification in other disciplines.

METHOD

We decided to model only single-component mineral spectra because they allow us to establish the
absolute minimum S/N and spectral resolution necessary to distinguish between mineral species. This type of
simplified model was adopted with the understanding that multicomponent spectra will require even higher S/N
and resolution because of overlapping absorption and weaker band strengths due to dilution by the other mixture
components. Minerals from seven mineral groups (ahmite, calcite, chlorite, hematite, kaolinite, montmorillonite,
and museovite) were chosen for evaluation based on the presence of easily detected spectral features and
common occurrence at the ground surface. All of these minerals have either Fe charge-transfer and crystal field
bands in the VIS/NIR region or OH, Metal-OH, HZO, COj2-, and SOd2-vibrational features in the NIR region.
Some of the minerals have features in both regions.

A bidirectional-reflectance spectrum of each mineral was fwst deconvolved to the spectral resolution of
each imaging instrument, and then scaled random noise was added. Signal to noise is defined here as 50 percent
reflectance divided by the standard deviation of the gaussian-noise spectrum, with standard deviation uniform at
all wavelengths. To make our determinations statistically accurate, we generated over 20,000 noisy spectra for
each convolved mineral spectrum The S/N levels varied from 1 to 500 as did the number of noisy spectra at
each level: 400 for the high S/N levels and up to two thousand at the low SIN levels. These spectra were then
analyzed by the Tricorder algorithm and the best matching library mineral spectra chosen for each noisy-
spedrum. Tricorder fits the noisy spectra to over 120 library mineral spectra (convolved to the noisy spectrum
resolution) by fmt removing the continuum fkom diagnostic spectral regions of both the noisy spectrum and
library S- and then least-squares scaling each library spectral absorption to the corresponding continuum-
removed region in the noisy spectrum. During the process of scaling, a linear correlation coefficient, which we



call the “fit” is generated for each library mineral comparison. The mineral with the highest tit is chosen as the
best spectral match. Tricorder determines the fit of each library mineral spectrum by individually fitting all the
diagnostic absorption in the library spectrum to the noisy spectrum and then calculating an overall fit by
weighting each individual tit by its absorption-feature’s area.

Because random noise can make a mineral’s spectral features resemble those of other minerals and
because this effect is magnified as S/N decreases, we expected Tricorder to choose several different mineral
matches, especially at the low S/N levels. We also expected Tricorder to make correct identifications at high
S/N levels, Tricorder gave the results that we expected at these S/N extremes. Of particular interest is the S/N
region where Tricorder fmt starts to make incorrect identifications. By plotting the percentage of correct
identifications versus S/?4 level, we can determine precise SIN levels at which the algorithm has a given percent
accuracy in identi~ing this mineral at a given spectral resolution. By plotting the individual incorrect mineral
identifications versus S/N we can determine which minerals are most likely to start spectrally resembling the
noisy spectrum as S/N decreases. For example, calcite is misidentified 1 out of 9 times at a S/N of 13 at
AVIRIS resolution. Stated another way, with Tricorder, we are able to spectrally recognize calcite 90 percent of
the time at a S/N of 13 at AVIRIS resolution. The other 10 percent of the time we would either identi~ calcite
as epidote, nontronite, hectorite, dolomite (each of which have strong 2.3-pm absorption) or classify the noisy
spectrum as having NO MATCH in the spectral library. As spectral resolution decreases this 90 percent
identification level occurs at progressively higher S/N levels.

By compiling the S/N levels for each imaging spectrometerat which 90 percent of the identifications of
a mineral are correct, we can quantitatively assess the effects of S/N and spectral resolution for each imaging
spectrometer. Preliminary work shows that Tricorder’s ability to correctly identify a mineral increases with
increasing S/N and sptxtral resolution.
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1. JNI’RODUCI’ION

Remote sensing of sand dunes helps in the understanding of acolian process and
provides important information about the regional geologic history, environmental change,
and desertification. Remotely sensed data combined with field @lies arc valuable in
studying dune mo~hology (Breed et al., 1979), rcgionrd aeolian dynamics (MainWet,
1984), and aeolian depositional history (Mount and Lancaster, 1990). In particular,
active and inactive sands of the Kelso Dunes have been studied using Landsat TM
(Paisley et al., 1991) and AIRSAR (Lancaster et al., 1992). In this report, we describe
the use of AVIRIS data to study the Kelso Dunes and to compare the AVIRIS information
with that from TM and AIRSAR.

2, STUDY SITE AND DATA

The Kelso Dunes, Mojave Desert, California, cover about 100 km2 and range in
elevation between 500 m to 900 m. The area of active dunes includes three large linear
rid es (up to 170 m high) superimposed by 5-10 m high crescentic and reversing dunes

tan surmutded by 3-15 m high stabilized transverse and linear dunes (Paisley et al.,
1991; Lancaster et al., 1992). Under present conditions, the prevailing westerly winds are
counter-balanced by strong orographically controlled winds from the north, easg and
south (Smith, 1984). This wind pattern accounts for the position of the dunes and the
observation that there is little net change in dune location, even though there is active
sand movement (Sharp, 1966). Smith (1967) suggested that the dunes formed under
more arid conditions with stronger winds, and have since been modified due to climatic
changes. The vegetation cover is less than 5% on the active dunes and 10-15% on the
stabilimxl dunes (Lancaster et al., 1992).

3. METHODS
AVIRIS data(PG02031) used in this study were flown on May 21, 1994. The

AVIRIS image data were radiometricdy calibrated and were reduced to “scaled surface
mflectances” using an atmospheric and solar model, ATREM (Gao and Goetz, 1993).
The AVIRIS data were then compared with a Landsat composite image (Paisley et al.,
1991) and AIRSAR data collected during the Mojave Field Experiment campaign
(Arvidson et al., 1991).

A color composite AVIRIS image is used in this preliminary study. The bands
were selected using a laboratory spectra plot of major minerals from the dune area so that
the spectra are most separated at these bands (Figure. 1). Point counting of field samples
show that most of the Kelso sands are composed of 29-49% quartz, 22-39% plagioclase,
18-29% K-feldspar, 5-15% other minerals including dark minerals. Some sites have
highly concentrated magnetite (28%; Paisley et al., 1991). Finrdly, band #10, #89, and
#184, centered at 0.46(X29pm, 1.2028 ~, and 2.1073pm respectively, were assigned md,
green, andblue in the image analyzed.
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