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Abstract. The availability of high spectral resolution data and laboratory
collected spectra of surface materials allows the automatic identification of spectra
collected by airborne instruments without the need of ground data. Using
relatively simple matching techniques, the identity of the major components in
each surface pixel can be obtained by comparison of the pixel spectra to each
library spectra. A further step using an expert system can determine whether to
accept or reject the basic shape match using several parameters such as flatness
and spectral contrast (or separation) of materials. The output consists of a map of
the identified materials with an indication of their purity. These end-members are
input into a linear mixture model to determine the proportions of each identified
material in each image pixel. An application of the method using both GER and
AVIRIS data is given.

I. Introduction

Identification and mapping of surface mineralogy and vegetation community
distribution are now possible by applying a shape analysis of high spectral
resolution data using a minimum deviation algorithm. Using comparisons in
shape of both overall curve and primary absorption features of each pixel to a
library of reflectance spectra, the identity of each pixel can be determined.

Although an identity is established, the data is processed further using an
expert system, to estimate the doubt associated with the matched identity and
whether to accept or reject the identity based on the calculated doubt. Several
parameters extracted from the data such as curve flatness and spectral contrast
(or separation) are used at this stage. The output consists of relatively pure pixels
of each identified component.

The purest pixels of each component identified by the expert system are input
into a linear mixture model to estimate proportions of each component in each
image pixel. Mixture modelling complements the expert system approach, as
mixed pixels are not readily identified by matching to a library of pure materials.
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II. Area of study

The methods were tested using both AVIRIS and GER data sets, collected
over a site near Golconda in north central Nevada. The site covers the boundary
between the Cambrian Preble Formation and the Ordovician Valmy Formation
along the Getchell fault trend.

The geology of the Preble formation is primarily of interbedded folded
quartzites and micaceous phyllites, with limited outcrops of blue grey, partly
dolomitised limestone. Mineralisation is confined to N-S trending high angle vein
systems, close to the Getchell fault. Some disseminated gold mineralisation is
presently being mined in the area and seems to be related to silicification and the
presence of abundant illite.

Vegetation cover is highly variable in this semi-arid terrain and consists
primarily of scattered sage brush and grass, with limited development of annual
shrubs in the stream beds.

The area is shown in Slide 15. The slide consists of four separate images. The
image, top left, is a brightness image of the AVIRIS data covering the 2.0 mm to
2.5 mm wavelength region. The area of interest is shown outlined in red. There
are two dark circular regions in the area of interest that correspond to a
mineralised area currently being mined. North is to the right.

III. Processing and analysis of the data

The data processing and analysis consist of three stages. The first stage is
shape matching of the reflectance spectrum of each data pixel to the library
reflectance spectra. The data is converted to a set of percentage variations about
the mean value, which allows matching of the data in a manner independent of
the reflectance scale, which side steps the problems of shadowing and brightness
variations due to grain size. This step is performed on both the overall curve shape
and on smaller wavelength regions that define areas of characteristic absorption
for each library material. This eliminates false matches, where the overall curve
shape is well matched, but the error is concentrated on a small but characteristic
absorption feature.

The second stage is a simple expert system, which evaluates parameters
extracted from the data and spectral library to determine the doubt associated
with the simple shape match. For example the accuracy of the match will be of the
same order for the whole curve shape and for the characteristic absorptions;
variations in accuracy between these two measures increase doubt. Another
parameter is spectral contrast, or separation, for example, if a match score is
moderate for the match of two materials in the library to the pixel spectrum and
the separation of the two materials is quite low in the pure (library) state (e.g.
Calcite and Siderite), the match may be accepted, with the proviso that the actual
identity could be one or the other. While with the alternative, that given the
moderate match score for the match of two materials in the library to the pixel
spectrum and the separation of the two materials is quite high in the pure state
(e.g. Calcite and Muscovite), the match may be rejected on the basis that it is most
likely to be a mixture of dissimilar materials. The expert system basically ties
together various parameters from the data and makes a decision to accept or
reject the assigned pixel identity.
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The third stage uses the output from the eéxpert system stage to determine the
end-members for the linear mixture model. The pixels with the highest match
scores are the purest in the image; these are input as end-members into the
mixture algorithm which estimates the proportion of each identified component in
each image pixel. Estimation of the proportions f is based upon minimisation of
the quadratic function:

(x - M) TN-1(x-Mf)

where x = a pixel spectra
M = a matrix whose columns are end-member spectra
N = a variance-covariance matrix independent of f.

The above equation is subject to the following constraints,
0<fij<1  i=l..c and
fl + f2 soen fc =1

Using this modified classical estimator error estimates can be calculated, for a two
component mixture with the sum to one constraint imposed and with N given by
sI, this quantity is given by :

E = s/(m1-m2)T(my-mg)

and in this case the same for each component. This shows that the error on the
estimate depends both on the level of noise in the scene and on the spectral
separation of the components. When more than two components are present, E
depends on the distance between the component and the closest mixture to it of
the remaining end-member spectra.

IV. Geological application

Slide 15 contains four images. The top left image is the previously described
AVIRIS brightness image. The image bottom left is a corresponding material
identification map, again with north to the right. The map is based on shape
analysis alone, prior to the expert system stage. The colour coding is as follows.
Undifferentiated clays (muscovite, illite and kaolinite) are shown in red, dry
vegetation in blue, chlorite in yellow and green vegetation in dark green. The clays
are seen to dominate the area of interest (outlined in red in the brightness image)
and are confined primarily to the phyllites of the Preble formation to the east of
the Getchell fault (bottom quarter of the image). The only distinct feature to the
west of the fault is an area rich in chlorite (yellow).

The image top right is another material identification map of the GER data
over the outlined area of interest of the AVIRIS data. In this image, the clays are
separated, red is illite, green is kaolinite and blue is muscovite. Note the rotation
of the image relative to the AVIRIS data, here north is to the top. The bright red

area (centre left of the top right image) is an area of illite, that corresponds to an

160



active mine area, with disseminated gold mineralisation. While the blue-green
area consists of muscovite and kaolinite with no economic mineralisation. The
image below (bottom right) is the corresponding map after the expert system
stage, although the number of accepted pixels is reduced, the general distribution
of clay materials remains unchanged, except for an area of illite (red) in the shape
image (top right image, centre right), that is rejected in the expert system output
(bottom right image). This essentially confines the illite distribution to the area of
economic mineralisation currently being exploited (red, bottom right image).

The pixels with the highest matches from the material identification maps are
the purest in the image and were used for input as end-members in the mixture
algorithm. Seven end-members were identified by the expert system in the GER
data. These were input into the mixture model and their E values are shown in
column A, below.

End-members A (%) B(%)
Muscovite 16.5 9.0
Nlite 8.4
Dry vegetation 26.0 . 18.1
Calcite 14.2 11.9
Kaolinite 36.1
Gypsum 32.2
Green vegetation 11.9 84

The high errors using seven end-members provide proportion maps dominated by
noise. To reduce this problem, those with the highest E values are dropped. Apart
from the muscovite, these are the materials with 2.2 mm absorption features. As a
result, muscovite acts as a composite "clay" end-member, but the errors are now
reasonable (column B). The clay mixture map produces high estimates in the
regions with clearly identified pixels from the shape match and expert system
stages. :

V. Vegetation application

Three vegetation communities are found in this region. In the dry periods the
densities and the amount of dry and green material in their canopies differ. The
graminaceous community consists of dense dry vegetation, while the
chaemophytic community has an open canopy, with lower proportions of these
materials and a lower density. As the amount of dry and green vegetation in each
pixel is known it can be used to classify their distribution. If the geological
mixture maps are added together a map is derived that depicts the amount of bare
ground. These vegetation communities can now be thought of in terms of their
distribution in the ternary mixture space of bare ground, green vegetation and dry
vegetation. Where each community is dominant, it occupies a specific region of
this mixture space.

A simple decision rule classifier can then be implemented to classify each
community. If an area has >90% green vegetation for example, the annual shrub
community will be dominant. A similar threshold on the dry vegetation will
outline where the graminaceous community is dominant. A rather arbitrary
threshold of >90% has been used to outline areas of dominantly bare ground. The
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chaemophytic shrub community is highly variable in its density and also exhibits
variations in the amount of dry and green vegetation in its canopy, it lies in the
large region of this ternary mixture space not defined by the other decision rules.

Slide 16 shows the classified map resulting from this mixture space
interpretation. The classes that are relatively pure such as the annual and
graminaceous communities and the bare ground have solid colouring of green,
yellow and red respectively. The region, where the chaemophytic shrub community
dominates, exhibits large variations in density to show that a vegetation density
map (derived by adding the dry and green vegetation maps together) is used as a
backdrop. The community is displayed in various shades of cyan, where grey
indicates a low density and bright cyan a high density.

V1. Conclusions

1. With current high spectral resolution data and a library of reflectance
spectra, it is relatively easy to carry out a shape analysis of each pixel spectra and
thus determine the identity of the spectrally dominant surface component.

2. An enhancement using an expert system stage that cross checks various data
and library parameters enables a much clearer identification of materials present.
With improvements it should allow the separation of components that would be
misidentified using only the simple shape match.

3. Extraction of the purest material pixels provides an alternative method for
determining end-members for a mixture model.

4. The mixture modelling extends the shape matching of pure materials to give
a distribution of the identified components in each image pixel. However, very
similar materials cannot be separated using mixture modelling due to their low
contrast and high noise level of the imagery. They can be separated by the expert
system as it uses a more robust matching technique, although the expert system
cannot measure abundance or classify mixed pixels.

5. Linear mixture modelling, combined with field work to determine the
vegetation phenology at the time of image acquisition and the various components
in the plant canopy, is an effective method of deriving ecological parameters from
imaging spectrometry data.
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