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I. Introduction

Detection of target materials in image data has long been of major interest in
analysis of image data. Targets (any objects or materials that are being sought in an
image) can be detected in multispectral images based on their spatial or spectral
properties, or a combination of both. To be detected based on spatial propetties alone
(e.g.: shape, size, texture), the target must be large relative to image sampling size. In
this case, the target must be expressed by a group of pixels. |f the multi-pixel target is
also spectrally distinct from the background, it can be detected spectrally as well as
spatially, which may facilitate identification.

Even though sub-pixel targets cannot be detected spatially, they can be
detected spectrally under certain conditions of spectral contrast, spectral sampling,
and instrumental noise. The spectrum of a sub-pixel target mixed with the spectrum
(or multiple spectra) of the background results in a combined spectral signal. In the
context of a multispectral image, where there is spectral variance from pixel to pixel,
the target spectrum commonly can be estimated using spectral mixture analysis (e.g.:
Adams et al., 1986, 1989; Smith et al., 1990; Gillespie et al., 1990). Thus, spectral
mixture analysis can be used to detect and, in some instances, identify targets at the
sub-pixel scale.

Many of the conditions that limit the spectral detection of sub-pixel targets have
been identified in earlier studies. Siegal and Goetz (1977), for example, observed that
the masking effect of vegetation on detection of rocks/soils in a composite spectrum of
vegetation and substrate depends upon both the fractions and the spectra of the
surface components. In one of the first studies to analyze detectability thresholds,
Shipman and Adams (1987) applied two-component spectral mixture models to
laboratory spectra to detect small amounts of alunite and kaolinite in desert alluvium.
Johnson et al. (in review) used the standard deviation of the difference between the
background spectrum and spectral mixtures of the background and target to estimate
the threshold for target detection. Because both Shipman and Adams (1987) and
Johnson et al. (in review) used laboratory spectra, noise (1% reflectance), although
identified as a limiting factor, was not a major source of error. However, noise can be
significant (in excess of 5% reflectance) in image data, particularity in the narrow
bands of hyperspectral systems such as NASA's Airborne Imaging Spectrometer (AlS)
and the Airborne Visible-Infrared imaging Spectrometer (AVIRIS). The effect of
different instrumental noise and spectral sampling intervals on spectral abundance
was investigated by Goetz and Boardman (1989), who emphasized the importance of
spectral contrast between endmember spectra in obtaining accurate fractions,
particularly with noisy data.

Equation 1, the general equation for spectral mixture analysis, shows the
relationship between the continuum and residuals in detection threshold analysis.
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The linear mixing model, used in this paper, comprises linear combinations of
component (endmember) spectra:

Rmix,b = Z (Fem Remb)+ Eb and ZFem=1 (1)

where Rmix b is the reflectance of the mixed spectrum at each band (b), Rem p is the
reflectance of each endmember (em) at each band, Fgp, is the fraction of each
endmember in the scene, and Ep is the residual at each band. If a target is abundant
at the sub-pixel scale and distinguishable from the other spectral components
throughout the spectrum, it generally can be treated as a spectral endmember. For
this case, the detection threshold is the smallest fractional abundance (Fem) of the
endmember that can be measured above system noise. A procedure for determining
this threshold was developed by Sabol et al. (1990) and is referred to as “continuum
threshold analysis". However, the target is not normally modeled as an endmember
when its sub-pixel abundance is low or when its spectrum deviates from mixtures of
the other components at only a few wavelengths (Smith et al. 1985; Gillespie et al.,
1990; Adams et al., in press). In this case, the target detection thresholds are best
determined by analyzing the deviations of the modeled endmember mixtures from the
image data in the band residuals (Ep) using residual threshold analysis (Gillespie et
al.; 1990, Roberts et al.; 1990).

In this paper, we present an approach to predict the minimal spectral -
contribution necessary for detection of a target in the band residuals using residual
threshold analysis. This approach was demonstrated for the case of detecting soil in
the senescent grassland of the Jasper Ridge, September 1989, AVIRIS data.

. Residual Threshold Analysis

A target spectrum that can be mimicked by mixtures of the (background)
endmembers at all but a few bands may be undetectable using continuum threshold
analysis. In this case, the target is detectable in precisely the bands where the
endmembers are not well modeled. Using these "diagnostic” bands, threshold
detection limits can be determined by residual threshold analysis. Unlike continuum
analysis, the target spectrum is not included as an endmember in residual threshold
analysis. Consequently, the spectral contribution of the target is partitioned among the
endmembers, thereby shifting the computed fractions from the preassigned fractions in
the spectral mixture. The partitioning is given by:

Cb =3 [Fem + (Ft Ftem)] Rem,b (2)
and both £ Fgm = 1 and X Ftem = 1

where Cp, is the reflectance of the modeled spectrum (continuum) at each band, Fyis
the fraction of the target in the observed mixed spectrum, Fgm, is the fraction of each
endmember in the observed spectrum, Ftgnm is the fraction of the target attributed to
each endmember, and Rem b is the reflectance of each endmember at each band.
Ftem is determined by spectrally unmixing the target spectrum relative to the
endmembers. :

To illustrate target detection using continuum threshold analysis, consider a
surface composed of three materials that mix spectrally, a target material (covering

100



50% of the surface) and materials A and B (each covering 25% of the surface). In this
example, the spectrum of the target is not included as an endmember. When the
mixed spectrum is unmixed relative to the spectra of materials A and B (hereafter
referred to as endmembers 1 [EM1] and 2 [EM2)), the fraction of the target spectrum
will be partitioned among the endmembers. This partitioning (Ftem) can be
determined by spectrally unmixing the target spectrum relative to the endmembers. If,
for example, the target is partitioned as .77 endmember 1 and .23 endmember 2, 77%
of the target's contribution to the mixed spectrum (50%) will be attributed to
endmember 1 thereby shifting the fraction of EM1 to 63% while the fraction of EM2 is
shifted to 27%.

In the absence of noise, the target is detected as the residual when the
spectrum modeled by the endmembers (Equation 1) is subtracted from the measured
spectrum that contains a contribution from the target (Equation 2). In the presence of
noise, the fractions of the endmembers may vary in value. The amount of variation in
the predicted continuum spectrum can be determined for a given confidence interval
by repeatedly combining the predicted continuum spectrum with noise, and unmixing
the noisy spectrum. The noise, modeled as having a gaussian distribution about the
predicted reflectance at each band, causes the resulting distribution of the apparent
fractions to be normally distributed about the initial proportions of the predicted
continuum. An example of this distribution is shown in Figure 1 A where a signal-to-
noise (SNR) of 50/1 (relative to a 100% reflective target) was used. In this example,
the range of uncentainty in the fractions of the predicted continuum due to noise at the
90% confidence interval ranged from 58.9% EM1 and 41.1% EM2 to 67.1% EM1 to
32.9 EM2. The uncentainty in the spectrum of the predicted continuum at the 90%
confidence is shown in Figure 1B. Noise also causes a range of uncertainty which
also affects the observed spectral mixture (Rmix,b in Equation 1). The target is
detectable in the band residuals where the uncertainty due to noise associated with
the observed spectrum and predicted continuum do not overlap (Figure 2). In this
example, the target is detectable in three wavelength regions: 0.5to 0.7 um, 2.02 to
2.2 um, and 2.25 to 2.4 um. For any given band, the detection threshold is reached
when these uncertainty ranges begin to separate. Therefore, by varying the fractions
in the spectral mixture, the detection threshold for each band can be determined.

lll. Application to Jasper Ridge Data

The problem of detecting soil in the regions of senescent vegetation on Jasper
Ridge, California was used to test residual threshold analysis. This problem was
chosen because: 1) the minimal spectral contrast between soil and dry grass makes
spectral separation of the two materials difficult (Roberts et al., 1991), and 2) the
exposures of soil in the dry grasslands are small and scattered, resulting in spectral
mixtures in most image pixels of the grassiands.

To be able to compare predicted detection thresholds that were determined
using laboratory spectra (measured in reflectance) to image data (in encoded
radiance), the image data were calibrated to reflectance. Two methods were used, the
empirical-line calibration and the linear mixing calibration (Roberts et al., 1991).
Because the level of noise in an image is an important factor in detecting spectral
targets, the noise in the image had to be characterized before any detection analysis
could be performed.
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A. Evaluation of Noise in Images

We developed a new technique that employs spectral mixture analysis to
evaluate image noise. Because noise is measured directly from the image, the
instrumental noise is measured at the time of the over-flight. The initial step in
determining image noise was to model the image as spectral mixtures of a set of
endmembers that account for most of the spectral variation in the scene (low band
residuals). For the senescent grasslands in the Jasper Ridge scene, three
endmembers were used: "soil 176", "dry grass”, and "shade" (Figure 3). The standard
deviation was calculated for areas in the image where the band residuals were low
(down to the noise level) (STDp), the assumption being that these residuals contain
only noise. Although a portion of the noise is found in the band residuals, the
remainder affects the endmember fractions. Therefore, it is necessary to determine
how the noise is partitioned between the fractions and residuals. This was determined
by constructing a synthetic image composed of a range of spectral mixtures using the
laboratory-measured endmember spectra. A known level of noise was added to the
image. Then, by inverting the spectral mixing equation, the noisy image was unmixed
relative to the endmembers to determine the predicted fractions. Band residuals were
determined by subtracting the predicted reflectance from the reflectance observed in
the noisy synthetic image. The standard deviation was calculated for each band
residual (which contained only noise) as well as for the noise that was added to the
image. The fraction of the noise in each band residuals (hereafter referred to as the
partitioning coefficient [pcp]) was determined by dividing the standard deviation of the
noise in each band residual by the standard deviation of the noise input into the
synthetic image. A plot of the partitioning coefficient for the endmembers used in
modeling the AVIRIS scene showed that, on average, 90% of the noise was
partitioned into the band residuals while only 10% of the noise caused uncenrtainty in
the fractions (Figure 4).

The total noise in the image (Noisep Tot) Wwas determined by adjusting the
standard deviation of the band residuals (STDp) in the AVIRIS scene for the noise that
was patrtitioned into the fractions by using:

Noisep,Toty = (1+pcp) STDy 3

To cast the apparent image noise into an SNR (relative to a 100% reflectant material),
the offsets and gains that were used to calibrate the image to reflectance were used to
determine the maximum signal for each band (Rpmax). The signal-to-noise for each
band in the Jasper Ridge AVIRIS image (SNRp) was determined using:

SNRp= —omax) (4)
Noise(p,Tot)

The resulting SNRp for the Jasper Ridge AVIRIS data (September 1989) is shown in
Figure 5.

B. Prediction of Residual Detection Thresholds

Using the procedures discussed above, the residual detection threshold for
each band was predicted for the target ("soil 176") in backgrounds composed of "dry
grass" and "shade". The results are shown in Figure 6. "Soil 176", which has no
distinctive absorption features, was most detectable between 0.5 and 0.6 um (lowest
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detection threshold). Target detectability, which drastically decreased between 1.5
and 1.6 um (where the threshold was high [> 55%)}), improved at longer wavelengths
(2.05 to 2.4 um) where the detection threshold decreased to approximately 20%.

This predicted trend of high detectability at shorter wavelengths, poor
detectability between 1.5 and 1.6 um, and intermediate detectability at longer
wavelengths was observed in the band residuals of areas of senescent vegetation on
Jasper Ridge when the target ("soil 176") was not included as an endmember.

The bands and thresholds from residual analysis depended upon which
endmember was the target. For example, when the grassiand was modeled as
mixtures of "dry grass" and "shade", "soil 176" (the target) was detected at lower
thresholds between 0.5 and 0.75 um (Figure 7A). However, if the target was "dry
vegetation" instead of "soil 176", the grassland (modeled as mixtures of "soil 176" and
"shade") would have lower thresholds for target detection at 2.09 um and 2.27 um
(absorption features caused by cellulose and lignin in "dry grass") (Figure 7B).

IV. Summary and Conclusions '

Residual analysis was applied to an AVIRIS image and used to predict spectral
detection thresholds of a target in a spectral mixture. The analysis determined which
bands were most useful for target detection, even when the target spectrum did not
have distinctive absorption features ("soil 176" in the example shown in this paper).
Because laboratory measured reflectance values were used, the results from this
-analysis represent a best possible case for material detection.

The detection problem presented in this paper was selected to demonstrate a
method based on spectral mixture analysis to predict target detection thresholds. This
method is generally applicable to imaging spectrometer data.

Detection of targets in the band residuals is only one part of spectral mixture
analysis. The target may be detected as an endmember (continuum threshold
analysis, Sabol et al., 1990) as well as in the band residuals. To determine the lowest
detection threshold (highest detectability) of a target in a spectral mixture, both
continuum and residual threshold analyses should be performed and compared.
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Figure 1. Determination of the uncertainty in the spectrum of the predicted
continuum due to noise. For this example, the uncertainty in the fractions of the
continuum (mixtures of endmembers 1 and 2) due to a 50/1 SNR at a 90%
confidence) range between fractions labeled A and B in Figure 1A. The
spectral continuum of these ranges are shown in Figure 1B.
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Figure 2. For any band, the target is detectable where the uncertainty due to
noise in the predicted continuum (black lines) and the observed mixed
spectrum (gray region) do not overlap. In this case, the target is detectable in
three wavelength regions: 0.5 to 0.7 um, 2.02 to 2.2 um, and 2.25 to 2.4 um.
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Figure 3. Spectral components observed in the senescent grasslands of Jasper
Ridge. "Soil 176" and "dry grass" are laboratory measured spectra that were
convolved to the AVIRIS bands used in the spectral analysis. "Shade"” was
modeled as having 0.1% reflectance at all wavelengths. ‘
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Figure 4. The fraction of the total image noise observed in the band residuals
(noise partitioning coefficient) using the spectra shown in Figure 3. On average,
90% of the noise was observed in the band residuals while the remaining 10%
affected the fractions.
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Figure 5. The signal-to-noise ratio (relative to a 100% reflective material)
determined from the Jasper Ridge, September 1989, AVIRIS scene.
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Figure 6. Predicted band residual detectability thresholds for "soil 176" in the
areas of senescent vegetation on Jasper Ridge.
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Figure 7. The bands in which the target is detectable using residual analysis
depend upon which of the component spectra is the target. If the target is "soil
176", the largest band residuals occur at the lower wavelengths (A). However, if

the target is "dry grass" the bands in which the target is most easily detected are
the higher wavelengths (B).
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