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ABSTRACT

Hyperspectral AVIRIS images may be expressed in terms of mixtures of a small number
of spectral endmembers, each ot which corresponds to a signiticant scene constituent.
Although the continuum spectra may be well described as mixtures of the spectra of these
endmembers, discrete spectral features due to unrecognized or rare scene constituents may

not be. In special mixture analysis, the abundances of the endmembers are collected in fraction
images. The anomalies are collected in residual images, which are the spectral differences
between the modeled and measured data. Root-mean-square residual images, averaged
across the spectrum, are sensitive to errors in the continuum model spectrum, but are
insensitive to unmodeled narrow absorption features. These are best seen in images of the
residuals in each image channel. Detection of unusual scene constituents is enhanced by
spectral mixture analysis, but is still limited by sensor sensitivity and the number and width of
spectral channels. Mixture analysis has application to remote soil characterization, because of
the importance of clay mineralogy, distinguished by weak, narrow absorption bands.

INTRODUCTION

AVIRIS was designed with 224 10-nm channels in order to resolve discrete
absorption bands characteristic of many mineral spectra, and to resolve fine structure
in vegetation spectra [Goetz et al., 1985). Much early research with AVIRIS data has
focused on this aspect. However, the high dimensionality of the data also offers an
unparalleled opportunity to characterize well the continuum spectrum - the major
part of the spectrum that lies between small discrete absorption bands. The continuum
spectrum offers a store of information about the scene [e.g., Adams et al., 1990b].
Normal concentrations of minerals such as clays or rare earths that may cause local
absorption in the spectrum can only be detected and identified against the continuum
background, and with a knowledge of what that background signifies in the scene
[Shipman and Adams, 1987; Adams et al., 1989; 1990b].

In conventional analyses, the scene is ordinarily taken to consist of pixel-sized
elements or tessera of identifiable composition, and a meaningful reflectance spectrum
is assumed to exist for each pixel. If the tessera happens to contain muitiple
components, then it is commonly assumed that a unique mixed spectrum exists for each
pixel. If the assumptions are correct, important components may be identified from
discrete spectral features in these spectra.

However, a different view of the world is possible, in which a scene is composed
of mixtures of a only few components: Aristotle [ca. 335 BC], for example, proposed a
set of four such endmembers, although not on the basis of their spectral properties.
Many natural scenes do appear to be mixtures of a limited number of basic
constituents, and the radiant energy from such scenes, measured and displayed as an
image, is likewise mixed from energy radiated from these components. It is thus
appropriate to analyze images in terms of mixtures; indeed, many images can only be
analyzed as mixtures, for the pixel sizes of 5 m or more currently attainable.
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In spectral mixture analysis, most of the scene is taken to consist of a few
spectrally unique components, the number and identity of which depend upon the
spatial scale, spectral resolution, and number of bands of the image [Adams et al.,
1989, 1990b; Smith et al, 1990a]. There exists a set of rules governing the spectral
mixing of the components. For each pixel, a set of component fractions may be deduced.
Each unique pixel spectrum may be estimated from the spectra of the components
(endmembers) and their fractions or abundances. '

AVIRIS is capable of resolving far more spectral endmembers than is required
to reproduce or model the continuum spectrum. If the scene does contain more
constituents than is required to reproduce the continuum spectrum, then either these
cannot be resolved (ambiguous) or they introduce deviations from the well modeled
behavior at only a few wavelengths, as is the case for many minerals with strong
absorption bands. These locally absorbing constituentscould be regarded as additional
endmembers, especially if a second level of analysis was invoked covering only those
few bands where they deviated most strongly from the well modeled continuum.
However, it is precisely in these absorption regions that linear mixing models function
least well [e.g., Shipman and Adams, 1987]. Therefore, we regard the AVIRIS
spectrum as consisting of two parts: a well modeled continuum, and a residual spectrum
- the observed data minus the estimation [Smith et al,, 1988b] - in which information
about unusual or unmodeled components may be concentrated. This strategy is best
suited for detecting scene constituents having no well-defined absorption features, and
low concentrations of scene constituents that do have them. Both these categories of
constituents can only be identified against the continuum background.

In this paper the general case for linear analysis is investigated. Two AVIRIS
images of Owens Valley, California, are analyzed in terms of their spectral mixtures,
and the endmember fraction and residual images are constructed. The images were
chosen because they depicted previously studied local outcrops of strongly colored
epidote-bearing metavolcanic rocks with distinct absorption features, and widespread
argillic soils containing small amounts of montmorillonite and kaolinite clays.

Previous Work

The systematics of mixture analysis have been well elaborated in a number of
disciplines such as isotopic geochemistry and petrology: for example, Reid et al.
[1973] used linear mass-balance equations to relate chemical compositions of
minerals to chemical composition of lunar samples. The significance of mixtures in
multispectral images was recognized at the very beginning of the Landsat era [Horwitz
et al., 1971, Detechmendy and Pace, 1972; Hallum, 1972; Nalepka and Hyde, 1972;
Sacco, 1972]. '

Pace and Detechmendy [1973] and Horwitz et al. [1975] used linear mixture
analysis to estimate proportions of components in mixed pixels, and Richardson et al.
[1975] developed linear regression models to describe relative amounts of vegetation,
soil, and shadow for Landsat MSS data. Ranson [1975] recognized the impact of

-~ mixtures on image classification, and Heimes [1977] studied the effects of substrate
proportions on spectral refiectance in forests. Kauth and Thomas [1976] considered
the changes in spectral mixtures in multitemporal data, and Crist and Cicone [1984]
extended this "tasselled cap" analysis to Landsat TM data. Chittmeni [1981] estimated
mixture proportions through their region characterization. Adams and Adams [1984]
used linear unmixing of MSS images to estimate natural vegetation cover. Much of the
agricultural research has been directed towards creating vegetation indexes only,
disregarding the compositional differences in the "substrate." However, Huete et al.
[1985] and Huete [1986] explicitly focused attention on the complex nature of the soil
components, and Adams et al. [1990a] used spectral mixture analysis of TM images to
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differentiate among different types of vegetation in Amazonia. Roberts et al. [1990]
further explore spectral unmixing to differentiate senescent and woody plant material.

The geologic surface has also received attention. Singer and McCord [1979]
proposed unmixing spectroscopic measurements of Mars. Marsh et al. [1980] used
linear discriminant analysis to estimate constituent proportions in mixed pixels.
Dozier [1981] extracted proportions of snow and substrate from multichannel thermal
images. Conel and Alley [1984] explored spectral mixture analysis of arid steppe to
isolate soil and desert scrub. Smith and Adams [1985a,b] developed an unmixing
strategy and applied it to imaging spectrometer data. Pieters et al. [1985] showed that
spectral mixtures were required to explain lunar images. Adams et al. [1986] applied
linear mixture analysis to Viking images of Mars. Smith et al. [1985] and Mustard and
Pieters [1986] estimated abundances from mixed spectra, and Mustard and Pieters
[1987] applied these techniques to terrestrial images. Gillespie et al. [1986) used
linear unmixing of TM images to characterize a desert soil chronosequence. Smith et
al. [1988a, b) demonstrated that imaging spectrometer calibration could be refined by
spectral mixture analysis, requiring only a library of reference spectra. Recently,
Boardman [1989] used singular value decomposition and mixing analysis to
characterize the spatial scales of spectral variance, and Goetz and Boardman [1989]
have suggested spectral unmixing studies as a way to predict the ideal number of
channels in hyperspectral images. Gillespie et al. [1990] extended spectral mixture
analysis to multispectral thermal infrared images.

Spectral data have been treated both as linear and nonlinear mixtures. Linear
models are widely, but not universally, applicable to terrestrial satellite images. For
example, individual rock types are intimate mixtures of small mineral grains, and
their reflectance spectra are nonlinear functions of the spectra of the pure constituents
[Adams and McCord, 1972; Nash and Conel, 1974; Johnson et al.,, 1983, 1990;
Pieters et al., 1985; Mustard and Pieters, 1986, 1987; Shipman and Adams, 1987].
Similarly, multiple scattering and transmission in plant canopies produce nonlinear
spectral responses [Suits, 1972]). Sasaki et al. [1983]) used a constrained nonlinear
method for estimating endmember proportions. However, intimate mixtures can be
treated linearly by converting reflectance to single-scattering albedo [Hapke, 1981;
Johnson et al, 1983; 1990). Additionally, in complex scenes both individual
lithologies and plant communities have been regarded as entities having characteristic
spectra, which may mix additively with other constituent spectra (references cited
above). '

During the past decade, we have attempted to formulate a systematic treatment
for the general mixing problem - one that is applicable to a wide range of data types
and scientific goals [e.g., Adams et al., 1989, 1990b; Possollo et al., 1990; Smith et
al., 1990a,b; Gillespie et al., 1990]. Although linear mixing models adequately
describe many low-dimensional data such as from Landsat TM, the relation of spectral
contrast in absorption bands to abundance of the absorbing material is inherently
nonlinear, and more complex modeling is required for many hyperspectral images. To
address this issue, Smith et al. [1988b] treated AIS (precursor to AVIRIS)
hyperspectral data as linear mixtures of endmembers and a residual spectrum, which
contained the unmodeled data.

Current Research

In the present paper, we employ a two-stage analysis for AVIRIS images:
modeling of the continuum as linear mixtures of the constituents that comprise the
bulk of the scene, and isolation of the discrete absorption bands as unmodeled residuals,
suitable for later analysis by spectral-matching and band-shape techniques [e.g.,
Clark et al, 1990). This analysis differs from previous discussions of spectral
mixing by Horwitz et al. [1975), Jackson [1983], Conel and Alley [1984], Huete et
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al. [1985), and Pech et al. [1986] in that the approach is directed at using a simple
mixture model to link reflectances measured by field and/or laboratory instruments
with image relative-radiance measurements acquired by AVIRIS. Although previous
studies have discussed the importance of spectral mixtures, they do not provide the
methodology to determine the combined atmosphere and instrument calibration at the
time of image acquisition, to remove variations in lighting geometry caused by
topographic and other factors, and to separate spectral mixtures.

Mathematical Framework

The radiant energy from a scene element, R, is integrated over wavelength band | and
linearly encoded as DN = g R + 0 in an image. Parameters g and o are the calibration
coefficients for AVIRIS, and are generally determined by imaging known targets before
and during flight [e.g., Chrien et al., 1990; Green et al., 1990]). The measured gray
level for each pixel may be described as:

n
DN; = 2 fx DNk + € [1a]
k=1
or, in matrix notation:
w -
Dnm = fn n']Tm.n + E3)m [1b]

where k denotes each of n endmembers comprising the scene, fraction f is the
abundance of each endmember, m is the number of image channels, € is the remainder

between the measured and modeled encoded radiance, ﬁ is the vector of measured

radiances (DN), and [1] is the matrix of endmember DN vectors, each referred to as an
image endmember. The fractional abundances f must all sum to unity:

n
E fk = 1 ' [2]
k=1

The measured spectra may be described as mixtures of m+1 endmembers. Generally,
fewer endmembers will be used, so that equation 1 is overdetermined. At least one

degree of freedom is retained for €. For low-dimensional systems, n may be estimated

by the number of eigenvalues for the covariance matrix that exceeds the system noise
level.

The radiance from a scene is temporally variable, responding to lighting and
viewing geometry and to atmospheric conditions. The radiance also depends upon the
scene topography and roughness, as well as the refiectivity. Of the above parameters,
only reflectivity is directly related to composition, and as such it is frequently the
parameter of greatest interest in interpreting AVIRIS data. For purposes of this
discussion, it is assumed that radiance (Rj) and reflectance (r;) are linearly related
as Ry = a| rj + by [cf. Hapke, 1981; Diner and Martonchik, 1984]. The coefficient aj
includes atmospheric absorption as well as geometric and irradiance terms, and bj is
an atmospheric path radiance term. It is further assumed for simplicity that
atmospheric effects are invariant over the scene, although this clearly is an
approximation [e.g., Green et al., 1989; Conel et al., 1990; Gao and Goetz, 1990].
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Given the above qualifications, the image DN may be related to scene reflectivity and
the image endmembers may be expressed as mixtures of more fundamental reflectance
spectra:

DNi = (gj aj) ri + (gi bi + o)) [3a]

n
DNk = g Xz fik rij +0% + €k [3b]
j=1

where @'t = (gi aj) and o'j = (g1 bj + 01); or, in matrix notation:
m m
MLm= 1Z @git][RImnlflnn] + [Z 0ii]+ [E]lm,n [3c]
i=1 i=1

where 1 is the unit vector for the ith band, and [R ] is the matrix of n reflectance
spectra r, known as reference endmember spectra. Equation 3 relates the image

endmembers to global coefficients g'j and o'y, plus [R]. Using equation 3, @'t and o'}
may be found from the image itself [Smith et al., 1988a,b], with no ground
measurements other than those from a generalized spectral library [e.g., Clark et al.,
1990]. For real data with measurement errors, equation 3 may not have a unique
solution. Gillespie et al. [1990] and Smith et al. [1990c] describe an indirect method
of finding the solution that is most appropriate in terms of the field scientist's
observations. :

Once the calibrating coefficients and n are known, it is possible to describe the
image DN for each pixel, not just the image endmembers, in terms of mixtures of the
chosen set of reference endmember spectra:

n
DNi = g9 X firj +0i + g [4a]
j=1
or, in matrix notation:
- - - - -
Dm = oml fn[R’]Tm,n] + Om+ €m [4b]

The goal of subsequent analysis is to find the endmember fractions fj for each pixel of
the image. It should be clear from equation 3 that this is possible by inversion. For
example, given the case with two image channels and three endmembers,

f1 = { (D1 -r13) (re2 - e23) - (D2 -r23) (r12 -r3)} +

{ (11 -r13) (r22 -r23) - (r21 -r23) (r12 -r13) }
fo = { (D2 -r23) -1 (r21 -r23)} + {r22 -r23 } [S]
f3 = 1 - (f1 +f2)
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where D = (DNj-0'j) / g'1 and, because this particular solution is exactly

determined, €} = 0. The explicit expression for the endmember fractions is more
complicated for more channels and endmembers than used for equation 5. In general,
equation 4 will be overdetermined, and may be solved by least-squares methods.

The products of spectral mixture analysis are thus sets of n reference spectra
and fraction images depicting their abundances in the scene, and m residual images
containing the difference between the modeled and measured data.

METHODOLOGY
Image Endmembers

The first step in analyzing the AVIRIS images is to determine the number and
identity of the image endmembers that are necessary to model the continuum spectrum.
The image endmembers - the DN vectors on the right-hand side of equation 1 - are
generally extracted from the image itself, not from a reference spectral library, and as
such they typically do not represent "pure" scene constituents, but are themselves
mixed from more basic reference spectra.

The number of endmembers is one more than the number of dimensions
required to explain the data variance, or the number of channels actually required to
describe the spectral constituents of the scene. This number, the intrinsic
dimensionality of the data [Possollo et al., 1990], may vary from image to image.
Spectral data are typically redundant [e.g., Adams et al., 1989; 1990b] and the
intrinsic dimensionality may be much smaller than the number of channels of data
acquired by AVIRIS.

The intrinsic dimensionality is determined from analysis of the image, where
possible after nominal calibration to radiance using preflight data [e.g., Otterman et
al., 1980; Chrien et al., 1990] and atmospheric corrections [e.g., van den Bosch and
Alley, 1990). For low-dimensional data, it is approximated by the number of
eigenvalues of the covariance matrix that exceeds the noise variance of the system. This
estimate is refined by inspection of data spaces in which selected transects from the
image are displayed [e.g., Buja and Asimov, 1985). For AVIRIS data, inverting the
entire covariance matrix to find the eigenvalues is impractical, and we make an initial
estimate from the number of eigenvalues for a subset of grouped channels, which
together span the AVIRIS spectrum. In this way, the dimensionality of the continuum
spectrum - but not of the entire spectrum containing sharp absorption features - is
approximated. Scene constituents spectrally distinguished only by local departures
from the continuum (low concentrations, sharp absorption features) are not treated as
endmembers, but are concentrated in a residual spectrum, discussed below.

Principal-component analysis permits approximation of the intrinsic
dimensionality, but it provides little information on which endmembers are important
and with which other endmembers they mix. Inspection of data clusters is necessary to
determine which endmembers mix together, to identify "extreme" pixels that consist
dominantly of a single endmember, and to identify which endmembers comprise the
bulk of the data. During inspection of the data clusters, the binary mixing lines
connecting the tangible endmembers with shade also are identified, and their
intersection is found in order to estimate the shade endmember, as discussed below. In
contrast to the principal axes, the endmember vectors generally are not orthogonal in
the original data space. Sabol et al. [1990] discuss the consequences of
nonorthogonality on fraction resolution and endmember detectability.
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Once a list of candidate image endmembers has been made, a final estimate of n
is made by tentative solutions of equation 1 using successively greater values of n until
the root-mean-square (rms) residual ((m-1Z(g{2))1/2) is reduced to the noise level
(i.e., 1-2 DN). The first iteration uses only the two or three best-defined image
endmembers. The rms residual image is inspected to determine how well the image is
fit by the selected endmembers and, equally important, where the fit is worst. DN
vectors from the worst-fit areas are compared to the list of unused image endmembers,
and - one by one - new endmembers are used in solving equation 1 until the entire rms
image (or at least the part of interest to the analyst) has a DN level comparable to
image noise. From our experience, this will generally be at a level of DN < 2 for
AVIRIS. Equally important, when the image is properly modeled it will generally not
be possible to see much structure other than microphonic noise in the rms residual
image.

In the above strategy, the image endmembers are selected by meeting the formal
requirements sequentially, not in one step. This approach conforms with that of both
Possolo et al. [1990] and Huete [1986].

Finding Shade

Topographic shadows and photometric shading differ from the atmospheric and
global irradiance terms that influence measured radiance in that they are spatially
variable at the pixel scale. Thus they cannot be described by the coefficients g'; and
o'l. In a calibrated image, topographic shadows and photometric shading together act as
a zero-reflectance endmember that we refer to as "shade" [Adams et al., 1986; Smith
et al., 1990a]. From a single AVIRIS image, it is difficult to distinguish the darkening
due to photographic (Lambertian) shading from darkening caused by discrete subpixel
shadows. The shade endmember is spatially and temporally variable and contrasts
conceptually with the other, "tangible" endmembers that correspond to physical scene
constituents that change slowly if at all.

In a single image of a scene it may not be possible to distinguish shade from
darkening due to low albedo. Resolution of inherently dark surfaces is possible using
multitemporal data, which is beyond the scope of the present discussion.

A satisfactory image endmember for shade [Richardson et al., 1975; Adams et
al., 1986; Ranson and Daugherty, 1987, Smith et al., 1990a; Roberts et al.,  1990]
requires that multipixel shadows on a black surface exist somewhere in the image.
Although in the first stages of analysis the "darkest pixel" is sometimes used as the
shade vector, the darkest pixel generally contains contributions from illuminated as
well as from shaded or shadowed scene constituents, and in any case the reflectance is
greater than zero. Consequently, for refined analysis, in most images the shade image
endmember must be estimated from the distribution of the image data in the DN space.

The strategy Is to find a group of pixels - comprising only one or two tangible
endmembers, but a range of illumination geometries. In DN space, these data will be
distributed along one or two binary mixing lines connecting the lightest and darkest
scene elements. If different mixing lines are present, they will converge towards a
common small (dark) DN vector, although the intersection will not itself be observed.
The locus may be found graphically, a tedious procedure for AVIRIS data, or it may be
estimated from the closest approach of lines regressed to two or more binary mixing
clusters. In general, shade will lie close to the principal axis of the data, so that it may
be approximated well even if the DN value for only a single channel is found by
triangulation. In finding shade, it is important to note that shadows cast by leafy
vegetation contain green and near-infrared light transmitted through the leaves, and
are not described by the same vector as shadows from opaque objects [Roberts et al.,
1990]).
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Beference Endmembers

Transforming the AVIRIS image 1o fractions of image endmembers is useful, but
does not realize the full power of spectral mixture analysis. This is because the image
endmembers themselves may be mixtures of still more basic or spectrally extreme
scene constituents. The image endmembers are derived from the image itself, and if no
"pure" pixels are encountered, the endmembers will be impure also.

The next step in analysis is to select a subset of spectra from a reference
library that, in the experience of the analyst, islikely to be encountered as scene
constituents. The choice of individual spectra is not too important, provided a
sufficiently wide range is represented. It is better to include too many than too few
reference spectra. In our experience with Landsat TM, the preliminary list of
reference endmembers may include 60 - 100 spectra. Because AVIRIS spectra have
more detail, more reference spectra may be useful. However, this is not a foregone
conclusion: because of the way in which we divide the spectrum into a continuum and
residual part, the number of endmembers is not necessarily related to the number of
image channels, and the number actually chosen is likely to be on the order of ten.

After selecting a pertinent subset of the reference library, the reference
spectra are grouped by scene constituent: e.g., riparian vegetation, carbonate rocks,
and so forth. These groups include those needed to describe the image endmembers. The
library is sampled again, this time into a large number of subsets of n spectra each,
where n is the number of image endmembers. Each spectrum in each sample is drawn
from a different group; the same groups may be represented in each sample.

The n image endmembers (DN) are modeled as mixtures of the n reference
spectra (reflectance) in each sample, first using a method of successive approximation
to solve equation 3 for the calibration coefficients, g' and o' [e.g., Gillespie et al.,
1990]. Because of system noise, direct inversion of equation 3 to solve for the
calibration coefficients and endmember fractions simuitaneously may not be feasible:
there may be multiple apparent solutions. The first approximation is to assume values
for the reference endmember fractions fj, based on any available information,
including ground measurements and observations, photointerpretation and past
experience. For reasonable subsets of reflectance spectra, the calibration coefficients
will cluster about central values. Because the AVIRIS data have already been nominally
calibrated, the remaining calibration basically corrects for atmospheric effects, plus
minor changes in AVIRIS sensitivity during flight. Thus the values of the calibration
coefficients determined above may be predicted fairly closely. Subsets requiring
greatly different coefficients are rejected, and the list of candidates is narrowed.

The second approximation is to assume the value of the calibration coefficients,
generally the mode or mean of the found values. Equation 3 is solved again for the
remaining subsets of reference spectra. This time f values are tabulated, and the list
of spectra is winnowed further.

The next steps involve successively closer approximation to the "correct"
values of g', 0' and f, and further winnowing. At this level of analysis, it is likely that
many values for the calibration coefficients and endmember fractions will cluster
tightly, such that it is not obvious which reference spectra fit the image endmembers
best. New criteria are invoked to proceed with the winnowing process: the sets that
are retained are the ones for which the rms residuals are smallest. Ultimately, it is
possible to narrow the choice to at most three or four sets of similar spectra.

It is next useful to solve equation 4 for fractions and residuals for the
remaining sets of reference spectra. This step differs from the previous ones in that it
is the image, not the set of image endmembers, that is recast in terms of the reference
spectra. Final refinement of the calibration coefficients and the choice of endmembers
is made in light of spatial patterns in the residual and fraction images. This is a
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powerful advantage that may not be evident at first glance, because it brings into play
the considerable range of skills and experience of the photointerpreter and field
scientist. This step in the analysis involves inspecting fraction images for large out-
of-bounds areas (0 < fx <1). Strictly, subzero or superunitary fractions mean only
that the endmembers have less spectral contrast than the data; mathematically, the
solution may be satisfactory. Nevertheless, it may be desirable to choose more extreme
spectra from the same groups.

An rms residual image calculated for the chosen reference endmembers is
inspected for areas of high DN and spatial structure pertinent to the scene rather than
to image noise. The fraction images themselves are then studied for conformity to
what is known about the scene: i.e., areas of known vegetation should have high f-
values Iin the vegetation image. Finally, band-residual images (p;) are constructed for
each channel, and studied for areas that are not well modeled. It may be necessary to
return to solving equation 3 in light of the experience gained with the image data; but,
if this is the case, it will be with a much narrower range of reference spectra and a
refined concept of the range of valid calibration coefficients and endmember fractions.

Many of the ambiguities in choosing reference spectra arise because there is
little difference between the candidates: either would suffice as an endmember. It is
necessary to recall that for the fractions to have quantitative significance in terms of
scene constituents, they must be calibrated to field measurements [e.g., Smith et al.,
1990a). If the "wrong" endmember is selected, in general the main effect will be an
adjustment of the calibration relating the endmember fractions to field measurements
of scene constituents. The fit of the model to the data may also be affected, and in this
case there may be a change in the rms residual image. Finally, if one of the ambiguous
endmembers has more local spectral contrast or structure than the other, the
individual band-residual images may differ. It is important to emphasize this trade-
off, because it may happen that there is no obviously "correct” endmember.

Band Residuals

Band residual images are calculated by subtracting the continuum model from
the observed data, band by band. They differ from the rms residual image, which is
averaged across the spectrum. Positive anomalies occur when an absorption feature in
the endmembers is not found in the data; negative anomalies occur when the data contain
such a band, but not the endmembers.

The continuum model is based on a small number of endmembers, and spectral
information describing all the other scene constituents resolvable by AVIRIS will be
concentrated in the residual spectra. The information contained in the residual
spectrum may be studied by further mixture analysis, or by other approaches that
focus on specific band locations and depths [e.g., Clark et al., 1990]. Band residual
images differ from the rms residual image in that the rms data describe the fit of the
model in a general sense, over the entire spectrum, whereas the band residual data
refer to a single wavelength or image channel only.

It is advantageous before analysis of specific absorption features to remove the
continuum spectra defined by the handful of endmembers that together comprise most
of the spectral variance of the scene. In part this is because the interference of
different features is reduced. For example, the spectrum of vegetation is convex near
the 2.2-um absorption bands in clays [e.g., Roberts et al., 1990]; inspection of the
mixed spectrum from vegetation and clays might lead to a bad estimate of the band
depth, or in noisy data the clay bands might be obscured entirely. The amount of
vegetation present is estimated from the entire spectrum, however, not just from a
small suspect window, and the vegetation fraction may be determined precisely. Thus
the correction of the spectrum near 2.2 um for vegetation is also precise, and the
residual spectrum contains only information from the clay-rich substrate.
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Eigure 1. Index and interpretive maps of California showing AVIRIS study areas in Owens Valley.
a) Independence Creek. b) Pine Creek.

Band residual data are displayed to good advantage in image format. This is
because localized concentrations of unusual, unmodeled endmembers stand out well
when the images are scanned sequentially, in order of wavelength. Where the measured
spectrum is well modeled, scene detail will be lacking in residual images, but at
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wavelengths where the fit is not as good, structural information will be evident. Once
an anomalous area is identified in the residual images, it is possible to display the data
for that region as a spectrum, devoid of spatial context, for conventional analysis [e.g.,
Goetz et al., 1982; Vane and Goetz, 1988].

APPLICATION

We applied spectral mixture analysis to two AVIRIS images of different scenes
in Owens Valley, California: Independence Creek, west of the town of Independence, and
Pine Creek, northwest of the town of Bishop (Fig. 1). Both were acquired at ~18:15
GMT, shortly before local noon, 14 June 1989. Both scenes contained examples of
minerals - especially epidote and clays - with strong absorption bands, present in
minor amounts. These minerals might be expected to affect residual images, but not
endmember fraction images. We expect the minerals sought for in this example to be
difficult to identify in conventional approaches, because they are present only in low
concentrations.

Desert scrub of the Great Basin sage community (Artemisia, Coleogyne,
Purshia, Ephedra) covered both study areas ~20-50%. The alluvial fans of the.
Independence area were previously modeled using the six-channel Landsat TM data and
a four-endmember model [Smith et al., 1990a). Certain critical scene constituents
were ambiguous to TM: for example, argillic soils could be modeled as mixtures of
vegetation, and different ferrihydrite-rich soils, and wood, bark and vegetation litter
masqueraded as weakly developed soil. AVIRIS offers the possibility of making these
and other important distinctions directly. However, our results will show that AVIRIS
required no more endmembers than TM to model the continuum spectra accurately. The
remaining information lies in the residual data. Figure 1 provides geologic sketches of
the two study areas, discussed in their respective sections below.

The AVIRIS data, before spectral resampling, were analyzed using WISP, an
interactive image analysis system developed and implemented in LISP on Symbolics
computers at the University of Washington [Shippert et al., 1988]. A Pixar is
peripheral to one of the Symbolics, and permits the rapid processing of large amounts
of data. The Pixar was used to scroll through a spatial subset of the AVIRIS images,
channel by channel, to select the bands for spectral mixture analysis. Images channels
were rejected if they were obviously noisy or if they were in atmospheric water-
absorption bands (~1.4 and 1.9 um). Very few channels outside of the water bands
were unuseable, and 171 channels were accepted. Using the Pixar, data from all these
channels were unmixed simultaneously, rather than hierarchically, in different steps
for each spectrometer or spectral region within the AVIRIS window. Reference
endmembers were chosen from a preliminary list of 96 reflectance spectra.

Spectra of Epidote and Clay-Bearing Sol

Figure 2 shows that reflectance spectra for both epidote and a sieved sample
(~100-um grain size) from the surface of a desert soil have similar overall convex
shapes in the spectral region 0.4 - 2.5 um. In each case, the rising slope of the

spectrum at wavelengths <1 um is due to absorption by Fe3+, and the falling slope

beyond 2 um is due to OH". The overall reflectance is also influenced by particle size.
lonic absorptions are also responsible for deviations from the continuum

spectra. A broad, weak Fet** is seen in the soil spectrum near 1 um (arrow), and a
narrower feature near 2.2 um (arrow) is attributed to OH- in clay. There is a hint of
a CO3= band near 2.3 um. The Fe** is probably due to unweathered mafic minerals,
and will only weaken with further soll development. The OH- is attributable to clay
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coatings on sand grains [Burke et al,, 1986). Although the solil is well developed for
eastern California, the spectral contrast is only 0.03 reflectance units. This band
depth is close to the resolution limit of AVIRIS spectrometer D (~0.02).

The epidote spectrum shows several deep discrete bands due to Fe3+ and Fe*+ at
wavelengths < 1.4 um. However, the most prominent feature, near 2.3 um, is due to
OH-" and has a depth of 0.25 reflectance units.

The epidote spectrum shows stronger discrete absorption features than the soil
spectrum, at least at the scale of the laboratory spectrometer measurement (2 cm).
However, at the scale of AVIRIS measurement (~10 m) epidote is present in much
lower concentrations, and the spectral features will be proportionately weaker,
whereas the soll spectrum is representative of even larger areas.

The major absorptions that determine the overall shape of the spectra will be
described by mixtures of endmembers during mixture analysis. The goal of the present
investigation is to recognize the discrete absorption features in the band-residual
images over soils of Owens Valley and epidote-bearing rocks along Independence Creek.

Independence Creek

The Independence Creek study area was chosen because it encompassed both an
outcrop of metavolcanic rocks containing epidote, and a soil chronosequence developed
on granitic alluvial fans containing montmorillonite and kaolinite clays. Figure 1 gives
a geologic interpretation of the study area. Most of it falls on the bajada, here
consisting of the alluvial fans of Independence Creek and adjacent drainages. The image
spans the fans, from their heads on the Sierra Nevada range front to their toes in the
fluvial sediments of Owens River. The fans are of different ages, ranging from ~104 to

5x105 years. Because deposition was episodic, corresponding to major glaciations,
there are large areas of uniform soil development, proportional to age. The soils are
non-calcic, and the chief weathering products are ferrihydrite and montmorillonite
clays on the younger fans, with the addition of kaolinite on better developed soils.
Discrete areas of different development are seen on the fans north of Independence
Creek, near the Sierra Nevada range front.
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Figure 3.  Single band (0.554 um) of the AVIRIS image of Independence Creek. Scene is
approximately 9 km across. Image strip for which band residuals were calculated is
outlined. Letters a- i denote areas discussed in the text.

The fans are covered uniformly with 30-50% desert scrub [Smith et al.,
1990a). Along Independence Creek and on the valley floor are more densely vegetated
areas, generally dominated by oak and cottonwood trees, or agricultural fields. Along
the contact between fans and fluvial sediments is a zone of dry grasses and brush,
including Russian thistle.

The fans and valley floor are subject to range fires, and a major recent (1985)
fire at Symmes Creek has denuded the upper reaches of the alluvial fans south of
Independence Creek (Fig. 1). At the time of AVIRIS image acquisition (1989), only a
fraction of the bushes had recovered, but dry annuals and grasses were common. Along
Symmes Creek itself, a smaller older (1947) burn scar is also visible. The fires.
covered areas of different degrees of soil development: west of the 1947 scar, visibly
reddish soils (~ 150 ka) are exposed in contact with a range of less-developed soils to
the north. The strong winds that accompany the fires can mobilize the upper few cm of
the soils, moving silt and clays great distances and creating low-amplitude dunes of
sand and pea-gravel [Bierman and Gillespie, 1990]. The burn scars are interesting in
terms of spectral mixing because they provide views of the same soils with different
patterns and density of vegetation.

The bedrock lithologies of the Sierra Nevada range front are dominantly
granitic, with scattered metamorphic pendants. The granitic rocks spall during range
fires and shed grus as they weather, providing an unstable surface for the growth of

255



lichens and coating by desert varnish. Exposed metavolcanic rocks do not become
grusy, but they do spall and shatter. Epidote is a widespread alteration product in the
metavolcanic rocks and, disseminated in microcrystalline form, it is probably
ubiquitous. Local concentrations also occur, in which some coarser epidote crystals up
to 1 mm in diameter are also found. Some of these concentrations are in cm-thick
veins, but others are in patches or vein aggregates ranging upwards in diameter to
~100 m. Nevertheless, abundance rarely exceeds a few percent.

The AVIRIS image of Independence Creek (Fig. 3) shows the bajada as uniformly
gray, with subtle tone differences due to variation in lithology and, especially, in
vegetation density. The fire scars are the most prominent aspect of the image (a). Soil
development differences on the bajada are subtle (b). Riparian vegetation on the valley
floor and along the streams is dark (c,d), but the dry vegetation at the toes of the fans
does not stand out (e). Light-colored patches there are sandy areas, in part along
aquifer recharge canals south of Independence Creek (f). Granitic bedrock (g) is light,
whereas the metavolcanic outcrops (h) are very dark. Where granitic bedrock is
exposed in the fire scars (i) it is even lighter. This is a measure of the extent of
darkening of the unburned surface due to vegetation and rock varnish.

The AVIRIS data for the bajada were found to have an intrinsic dimensionality of
only three. Smith et al. [1990c] give an extended discussion of the choice of
endmembers and the range of candidates. Four reference endmembers corresponding to
moderately developed reddish and weakly developed sandy soils on granitic alluvium,
desert scrub vegetation (Coleogyne) and shade were selected. Riparian vegetation and
dry grass were equally valid candidates, but were not present in large amounts on the
bajada and were not used.

Fraction images for two of the reference endmembers are presented in Fig. 4.
Figure 4a shows the fractions for the moderately developed reddish soil. The chief
patterns in the image are the low fractions over the recent fire scar (a), especially
over the less developed soils on the younger fans (b). Along Symmes Creek near the
range front, old fans within the scar (c) have the same fractions as across the
boundary (d). The rest of the bajada (e) appears as mottled gray, with patterns
delineating fan units according to age, as verified in the field. In general, bedrock
outcrops have high fractions, and so do some - but not all - heavily vegetated areas.
This phenomenon is best observed along Independence Creek (f) and at the distal ends of
the fans (g). Lastly, a zone extending beyond the perimeter of the recent fire scar is
locally light in the fraction image, always on the southeast side of the scar (h).

Figure 4b shows the fractions for the sandy soil. It is in many respects the
complement of Fig. 4a. However, over all heavily vegetated areas (i,j) the soil
fractions are both low. Were there additional soil endmembers, the complementary
fractions would be less common.

The four continuum reference endmembers together accounted for all except 1-
4 DN of rms residual data, over all bands (Fig. 5). Over most of the bajada and
foothills of the Sierra Nevada, the rms residual was about 1 DN. This low value is close
to the noise level of AVIRIS; nevertheless, the rms image does show scene detail that
would not be evident in a TM residual image at 1 DN. This increased resolution we
attribute to the large number of bands in AVIRIS.

The greatest rms residuals occurred in the riparian vegetation (a),
metavolcanic rocks (b), and south-facing slopes of granitic bedrock in the burned
areas (c). The riparian vegetation and the metavolcanic rocks were not represented by
an endmember in the analysis, but the granitic rocks were spectrally similar to the
sandy soil endmember. The metavolcanic rocks were of low albedo, and were not
assigned an additional endmember because it would be so similar to shade that the two
fraction images would appear "noisy."

Figure 6 shows band residuals for three selected spectral windows predicted
from the spectra of epidote and/or soils (Fig. 2) to have absorption features. Every
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Eigure 4. Two reference endmember fraction images, Independence Creek (light = high; -
dark = low). a) Well developed oxidized and argillic granitic soil. b) Weakly developed
sandy granitic soil. Letters a- g denote areas discussed in the text.

Figure 5. RMS residual image of
Independence Creek. The image
has been strongly stretiched to
reveal detail. The original data
range was 0 - 4 DN. Letiered
features are explained in the text.

third 10-nm band within each window is displayed, although all were calculated and
inspected. The residuals were uniformly contrast-stretched for display such that the
total range was 3 DN, with negative values dark and positive values light. The
residuals were calculated for the vertical image strip outlined in Fig. 3.

Figure 6a shows the residual data for a 21-band span in the visible spectrum.
These residual images superficially resemble the radiance data (e.g., Fig. 3), but upon
close inspection differences are evident. The positive spectral contrast between the
burned (a) and unburned sandy alluvium (dark) peaks at 0.554 um; the unmodeled
residual in either case is quite small at shorter wavelengths, and the contrast lessens
at longer wavelengths. This lessening of contrast is not as pronounced for the older
alluvium in the fire scar (b). The unburned fan at (¢) shows an interesting reversal
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of contrast between residuals for the reddish and sandy soils. At wavelengths <0.554
um, the reddish soil appears neutral, whereas the sandy soil appears light. At 0.613
pm the residuals are both moderately high, and above 0.643 um the reddish soil is the
lighter. The quartz monzonite bedrock (d) has a residual peak near 0.584 um, and an
epidote-rich zone (e) within the metavolcanics has a residual minimum centered near
0.6 um. The peak for the quartz monzonite is most prominent on south-facing slopes,
and it is therefore tempting to attribute it to an error in the shade vector, but were
this the case the sunlit/shaded contrast would persist across a wide range of
wavelengths, and it does not.

Figure 6b shows the residual strips from 0.931 to 1.183 um, spanning the
minimum of a major Fe*+ absorption in epidote.. The residual images have enhanced
contrast from 0.989 to 1.076 um, with the sense of the residuals similar to Fig. 6a,
for many of the same features. The burned areas and granitic bedrock are light, and the
metavolcanics are dark. The sunlitshaded slopes appear anomalous in the same way as
before. However, the fans at (c) are not associated with any positive or negative
residuals, and the contact cannot be detected in Fig. 6b. The southeastern margin of the
1985 fire scar just north of Symmes Creek (f), appearing to have a high fraction of
reddish soil in Fig. 4, shows a higher positive anomaly than the scar itself from 1.076
to 1.134 um. Lastly, trees bordering Independence Creek (g) have a positive anomaly
from 1.076 to 1.185 um.

Figure 6c shows residuals in the 2.2-um region, where both clays and epidote
have absorption bands. Excess montmorillonite that is not accounted for by the reddish
soil endmember should show as a narrow negative anomaly centered at 2.2 um; epidote
should show a wider negative anomaly deepening with wavelength, because the center of
the absorption band is > 2.252 um (Fig. 2). However, these patterns are not observed,
and across the entire window the continuum model appears to fit the data well, within
the noise limits imposed by spectrometer D (~0.02 reflectance units).

Figure 6 is effective in showing spatial characteristics of relative anomalies in
band-residual data, but less well suited for showing the shape or actual magnitude of

W Eiqure 6. Band-
residual  image
strips, for three
spectral regions.
The strips are
from the image
area outlined in
Figure 3. Letters
denote areas
explained in text.
a) Visible (0.49 -
0.67 um).

b) Near - infrared
(0.93 -1.16 um).
c) Near - infrared
(219 -2.25um).
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0.931 0.968 0.989 1.018 1.047 1.076 1.105 1.134 1.163
wavelength, pm (b )

(Eigure 6b. ¢,
Band - residual
images. )

(c)

2.192 2.202 2.211 2222 2.232 2.242 2252
wavelength, um

the anomalies. In Figure 7, spectra from two of the anomalous areas from Fig. 6 are
graphed, for the middle spectral window (~1 pum). Feature A has a broad positive
anomaly, roughly 0.03 reflectance units in height. It is associated with the quartz
monzonite bedrock, the spectrum being taken from an outcrop at the northern end of
the same meta-andesite ridge that had the highest concentrations of epidote. Residual
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spectrum B, from the south end of the ridge, is from one of the epidote-rich areas.
Spectrum B shows a broad negative anomaly.

Pine Creek

The Pine Creek [Fox et al., 1990] and Independence Creek areas are similar
geologically. In both, lithologies are dominated by the granitic rocks of the Sierra
Nevada, but metasedimentary rocks - especially marble - crop out near Pine Creek
instead of the meta-andesite. As seen in Fig. 1, the AVIRIS image of Pine Creek was
centered over the bajada, which here is dominated by a large moraine complex left by
the Pleistocene glaclers of Pine Creek. Downstream from the terminus of the moraines
are largely young gravelly sediments, covered locally by grassy meadows with denser
stands of trees along distributaries of the creek. Especially south of the moraines,
older deposits of bouldery debris flows are preserved.

The glaciations have controlled the alluviation history of the Pine Creek fan. Of chief
interest in this study is the preservation of fan units of a broad range of ages and
degrees of soil development. Fox et al. [1990] have characterized the volumetric clay
concentrations in each unit of the chronosequence, and we seek to find associated
anomalies near 2.2-um in the residual spectrum. These are anticipated if no
endmember accounts for clay alone, or if the depths of the clay OH- bands are not
proportional to the fraction of the clay-rich endmember.
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Eigure 8.  Shade fraction image, Pine Creek. Image has been inverted (complemented) such
that high shade fractions are dark instead of light. Scene is ~8.5 km across. Rectangle
shows the area for which band residuals were calculated. Letters a - d denote areas
discussed in text.

The mixture model that was used was the same as for Independence Creek.
However, alfalfa was used instead of Coleogyne for the vegetation endmember. The
shade endmember fraction image is shown in Fig. 8, inverted to resemble a radiance
image. The highest shade fractions (dark) are associated with north slopes (a) and
dense stands of vegetation (b), especially below the terminus of the moraines (c, d).

Figure 9 shows seven residual images for the 2.2-um window of Fig. 6¢. The
data were taken from the area outlined in Fig. 8. At Independence Creek, the continuum
model accounted for all the spectral variance. At Pine Creek, more information is
evident. The strongest anomaly is positive (light), associated with riparian vegetation
along the stream (a). The positive residual is not directly correlated with a high
fraction of shade. In the meadow area, both light and dark patterns are seen in all the
images of Fig. 9 (b,c). Much of the alluvial fan south of Pine Creek (d) is dark in Fig.
9, again for all seven bands. This large region of negative anomaly contrasts with the
mountain area (e), which has a neutral residual and was well modeled.
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Eigure9.  Strongly stretched band-residual images of Pine Creek, 2.19 - 2.25 um. Letters a -
e denote areas mentioned in text.

DISCUSSION

Although absorption features are always reflectance minima, anomalies in the
residual spectrum can be higher or lower than the model continuum spectra. Negative
residuals occur where there are absorption bands in the data not modeled by the
endmembers. Positive residuals occur where the endmember spectra contain
absorption features stronger than found in the data.

Areas of high rms residual either are deviant from the continuum model over
much of the spectrum, or they must exhibit extremely strong deviations in a few bands.
The correct explanation may be found by inspecting the band-residual images: global
deviance will be expressed as light or dark anomalies over many or most of the band
residuals, whereas local absorption features will appear in only a few bands. However,
subtle local deviations of a few percent will not appear in the rms residual, even
though they may be detected in the appropriate band residuals. It is these subtle local
effects that we anticipate in the band-residual images for scenes such as Owens Valley.

The residual images we calculated resembled the radiance images: the light
devegetated areas of the fire scars were associated with positive anomalies; the dark
meta-andesite is associated with a negative residual; sunlit slopes are positive, and so
forth. However, the residuals are not simply proportional to reflectance or radiance.
For example, the correspondence of the residuals to the radiance data is not evident at
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all wavelengths. Figures 6 and 9 show only three spectral windows for which there
were strong residuals. Across the rest of the spectrum, they were much weaker. Even
within the windows, close inspection shows that the supposed correspondence varies
from unit to unit in the scene: the positive anomalies on the southeast perimeter of the
fire scars appear in all three windows, whereas the stronger anomalies associated with
the scars themselves are not evident in the ~2.2.-um residuals. Anomalies associated
with trees along Independence Creek have different signs in the different windows: they
are positive in the visible and 1-um regions, but negative at 2.2 um. Yet in the
radiance images, vegetation is relatively dark in the visible and light at 1 um. Finally,
the centers and widths of the anomalies differ for the various units: the positive
anomaly near 0.6 um for the old alluvial fan west of the 1947 fire scar on Symmes
Creek is greater at 0.643 um than for the young fan to the north, yet they are the same
at 0.613 um, and the sense is reversed at lower wavelengths. The conclusion is
inescapable that the correspondence between residual and radiance is spurious.

Figure 7 shows that near 1 um the anomalies over the meta-andesite and quartz
monzonite at Independence Creek are equal in magnitude and bandwidth, yet opposite in
sign. The meta-andesite has a negative anomaly because there was no endmember with
strong Fet** absorption, but why are the burn scars and quartz monzonite positive? A
plausible explanation is that the endmember that spectrally most resembles granitic
bedrock and soil exposed by the fire was sandy soil, which was actually sampled from
an adjacent drainage containing more numerous mafic rocks, and hence more Fe*+. On
the fire scars the top few cm of soil were removed by wind, and the granitic bedrock
shed grus. Both processes expose unweathered soil or rock, and decrease the dilution of
the granitic spectrum by vegetation, lichen, and weathering products. As a result, the
spectrum is dominated by the Fe+*-poor quartz monzonite, with less absorption than
the endmember. Hence, the residual spectrum is positive in the Fe** absorption region.

According to this interpretation, the similar magnitudes of the anomalies are
coincidental, but the similar bandwidths and centers are unexplained. The anomalies
for the same sites, but at ~0.6 um, are at different band centers and have different
bandwidths, showing that the anomalies are not linked at all wavelengths. The
differential effects observed for different soils may arise because the weathered
horizons of the soils extend to different depths, but the agolian stripping is constant
across different units.

Anomalies over sunlit (positive) and shaded (negative) slopes of the same
material pose an interpretive challenge. In part, the pattern may be explained by a
small error in the shade vector, such that the larger rms residual results simply from
the high radiance. However, the burned fans also have a moderately high rms residual
(~2 DN): twice that of the adjacent unburned fans. Because these fans are not a factor
of two darker than the sunlit granite (Fig. 3), the residual must also represent a real
difference between the spectra of the granite bedrock in the burned area and the
reference sandy alluvium, as discussed above.

Some residuals appear to be related to patterns in vegetation abundance or type.
The unburned fans near Boron Springs Creek had detectable negative residuals at red,
but not green, wavelengths. This is explainable by increased leaf area, compared to the
Coleogyne endmember; however supporting field observations have not been made. The
anomaly along Independence Creek, especially near 1 um, could be related to the
concentration of trees there, yet the bandwidth is too narrow to correspond to the
near-infrared plateau of vegetation. The positive anomaly along the fire-scar
perimeter appears to be similar, but may be stronger: it is evident at 2.2 um as well.
Field observations suggest that this anomaly corresponds to a zone of dead shrubs,
killed by the 1985 fire. There are no leaves, and the wood is much more reflective
than the dark stems and bark of the Coleogyne. Hence, high positive anomalies are
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likely over the reflective plateaus of the wood spectrum. We have not inspected the
entire residual spectrum to establish this correlation.

Dry grass and brush were not modeled as endmembers, but where they occurred
- at the distal ends of the fans - they were expressed as high fractions of the old,
reddish soil endmember. Although the spectra are similar [Roberts et al., 1990] they
are not identical, and high residuals are expected, especially near the sharp OH- bands
near 2.2 um. However, this area was outside of the residual image strips we computed.

At Pine Creek, alfalfa instead of Coleogyne was used as an endmember. Despite
this, trees and meadows along the creek have positive residuals near 2.2 ym. The
endmember was defined from irrigated fields; a suggested explanation is that the
natural vegetation is water-stressed at this time of year, and less absorptive at 2.2
um.

Spectral Discriminati | the Number of Endmenmt

We anticipated that many more endmembers would be required for AVIRIS than
for Landsat TM, but such was not the case. Why are there no more than four or five
required for AVIRIS with 171 bands, when four are needed for TM with six?
Generally, when less discrimination is achieved than expected, the problem is
attributed to low sensitivity, or to a low signal/noise ratio (SNR). Without a high
SNR, only strong spectral differences would be apparent, and few endmembers could be

o 40— No Noise v 40— System SNR
g g
8 S 3d-
5 5 N
5 524 | N
a o \
; : \
Z = 10— §
| 0 N f
TM AVIRIS LAB TM AVIRIS LAB
B 20/1 SNR Explanation
3 40 RMS Error,
4 reflectance units
(8]
kS
] 7
.g <0.02 >0.05
S 0.02 - 0.05
=
N = 60

TM AVIRIS LAB

Eigure 10. Spectrometer discrimination among 60 reference spectra. Well-modeled spectra
have residuals of <0.02 reflectance units.
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resolved. But important aspects of the continuum spectrum could be resolved using
many measurements, even with lower SNR. Thus, the number of bands is a factor in
discremination also. Low noise is required primarily to resolve narrow absorption
features—that is, for the residual spectrum, not the continuum.

We explored the interplay of SNR and band number in spectral discrimination
experimentally. One measure of spectral resolution or discrimination is the number of
spectra that cannot be differentiated under a given set of sensor characteristics. We
took the four endmember spectra used for the Independence Creek image and attempted
to express 60 other reflectance spectra from the reference library as mixtures of
these four. The finer the discrimination, the fewer spectra should be expressed well as
mixtures. The particular spectra used did not matter, because the test was
comparative. In this experiment, we simulated different SNR levels by adding random
noise to the reflectance spectra. We sampled the spectra using three different sets of
bands: the six bands of TM, the 171 of AVIRIS used in this study, and the 512 of our
laboratory data (which covered the 1.4- and 1.9-um windows excluded from the
AVIRIS bands). We considered three cases: SNR = 0, SNR = 20, and SNR set to the
instrument specifications: variable for AVIRIS, from 20 to 100; 90 for TM; and =
100 for the laboratory spectra. The first two cases bracketed the actual case. The
spectra were modeled using equation 3, and the degree of fit was assessed using the.
rms-residual term. A fit was defined as "good" if the residual was < 0.02 reflectance
units.

The results are tabulated in Figure 10, for three ranges of the rms residual.
For the noiseless case and AVIRIS bands, 15 reference spectra were fit by mixtures of
the four reference spectra with an rms residual of <2%, whereas for TM and the
laboratory spectra, 12 and 13 spectra respectively were modeled at that level. For the
second, pessimistic case (SNR = 20), the number of well-fit laboratory spectra was
unchanged, whereas the number for AVIRIS was reduced by four and the number for TM
was reduced by eight. For laboratory spectra, the number in the intermediate and
poorly fit categories was unchanged; for AVIRIS, the number in the intermediate
category increased; and for TM, the number of poorly fit spectra increased.

For the realistic case ("system SNR"), the number of spectra in all three
categories was unchanged, for both laboratory and AVIRIS data. For TM, the number of
well-fit spectra was reduced by seven, and the number in the intermediate category
was increased by the same amount; the number of poorly fit spectra was unchanged.

Clearly, addition of noise to .the spectra reduced discrimination most for the
systems with the fewest bands. The SNR of AVIRIS does not seem to be the factor
limiting discriminability, at least for continuum spectra, and AVIRIS data were
nominally equal to laboratory data in this test. It follows that noise in AVIRIS data
serves primarily to reduce the detectability of discrete absorption features, where the
degradation of signal cannot be overcome by multiple measurements in nearby bands.

CONCLUSIONS

We found that, for desert surfaces of Owens Valley, the background spectra
measured by AVIRIS could be described as linear mixtures of weakly and moderately
weathered soils, vegetation, and shade. A fifth endmember, representing a second type
of vegetation, would have been locally useful on the valley floor. The clay OH" band in
the weathered soil endmember spectrum near 2.2 um, 0.03 reflectance units deep, was
evidently sufficient to describe all the clay absorption in the scene, at the AVIRIS
spectrometer D sensitivity and SNR levels. We did not detect the strong OH- epidote
bands near 2.3 um, from which we infer that the area covered by epidote was nowhere
more than ~15%.
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At shorter wavelengths, AVIRIS is more sensitive, and shallower bands are thus
detectable. We were able to see Fe*+ features at 1 um, for which the residual band
depth was 0.03, too great to be explained by epidote alone. It seems likely that other
ferrous minerals in the meta-andesite host rock must have contributed to this
measured band depth.

Evidently, the continuum may be described by a small number of spectral
endmembers and their fractions. This is a signal advantage of endmember analysis.
The continuum spectra, containing most of the information in the 171 bands of AVIRIS
data, may be described by four or five fraction images. This number appears to be
inherent to the scene: doubling the number of bands does not increase it, and the
dimensionality of TM, with only six bands, is roughly the same as of AVIRIS.

Endmember-fraction images have the advantage that they are thematically
meaningful; that is, they depict proportions of spectrally distinct scene constituents as
defined by the field scientist, not just radiant fluxes in a particular spectral band. The
endmember fractions may be empirically quantifiable as proportions of scene
constituents [e.g., Smith et al.,, 1990b]. Not only is there strong data compression, but
the remaining data are rendered more digestible by the image interpreter.

Although hyperspectral data do not appear to be necessary to determine the
continuum endmembers, they do define the model spectra with great precision,
enabling fine distinctions to be made using the residual spectra. The removal of the
continuum or background spectrum is a necessary precursor to analysis, or even
recognition, of the absorption features in the residual spectrum. For example, near
2.2-um woody plant material has a reflectance peak, at the same wavelengths at which
OH- in clays absorbs [e.g., Roberts et al., 1990]. By estimating the fraction of wood
based on a large number of bands, the residual spectrum may be corrected for wood
near 2.2 um, resulting in a more accurate representation of the depth of the clay
feature. Without characterization of the background, detection and identification of
absorption bands may be uncertain.

Spectral mixture analysis is a means of calibrating AVIRIS data for
instrumental, atmospheric and geometric effects such as sun elevation. This approach
does not depend on simultaneous field spectra or preflight AVIRIS measurements, even
though such data are useful [e.g., Smith et al., 1988a]. Another result of mixture
analysis is the partitioning of scene radiance into "tangible" and ephemeral sources:
namely, physical scene constituents and photometric shading and shadowing,
respectively. The shade fraction image is dominated by topographic information. It has
not yet been possible to separate low radiance due to "shade" from low radiance due to
dark surfaces using only VNIR data; nevertheless, removal of shade has led to more
time-invariant fractions for the tangible endmembers [Adams et al., 1990a).

We find linear spectral mixture analysis to be an effective tool in the analysis
and interpretation of AVIRIS data. It is a productive strategy to consider spectra
measured by AVIRIS as consisting of a continuum, which describes the general
background shape, and a residual, which contains spectral contributions from unusual
scene constituents and nonlinear effects, especially concentrated in narrow absorption
bands.

Research reported herein was supported in part by the Land Processes Branch
of the National Aeronautics and Space Administration.
REFERENCES
Adams, J. B., and Adams, J. 1984. Geologic mapping using Landsat MSS and TM images:

Removnng vegetation by modeling spectral mixtures. Third Thematic Conf. Remote
Sens, for Expl. Geol., ERIM 2:615-622.

266



Adams, J. B, Kapos, V., Smith, M. O, Filho, R. A,, Gillespie, A. R., and Roberts, D. A. 1990a. A
new Landsat view of land use in Amazoma ImL_Symp,_Q_n_BnmanLQata_Ac_quLsmg_n_Q_Q.
ISPRS, submitted, Manaus, Brazil (June).

Adams, J. B., and McCord, T. B. 1972. Spectral reflectivity: Optical properties of mineral
separates, glass and anorthositic fragments from Apollo Mare samples. Proc. Apollo 12
Lunar Sci. Conf. 3, 2183-219. MIT Press.

Adams, J. B., Smith, M. O., and Gillespie, A. R. 1989. Simple models for complex natural

urtaces A strategy for the hyperspectral era of remote sensing. Proc¢, IEEE Intl
Geosci, and Remote Sens, Symp, '89 1:16-21.

Adams, J. B., Smith, M. O,, and Gillespie, A. R. 1990b. Imaging spectroscopy Data analysis and

interpretatlon based on spectral mrxture analysrs In Preters C i . and Englert, P. J.,

and Planetary Instrtute Houston TX, in press.

Adams, J. B., Smith, M. O., and Johnson, P. E. 1986. Spectral mixture modeling: A new
analysis of rock and soil types at the Viking Lander 1 site. J, Geophys, Res. 91:8098-
8122.

Aristotle, ca. 335 BC. Metaphysics, Book Alpha 3-4. R. Hope, translator. U. Michigan Press,
Ann Arbor, 394 p.

Bierman, P. R., and Gillespie, A. R. 1990. Range fires: A significant factor in the dating and
evolution of geomorphic surfaces. Geology, submitted.

Boardman, J. W. 1989. Inversion of imaging spectrometry data using singular value
decomposition. Proc. IEEE Inil. Geosci. and Remote Sens. Symp. ‘89 pp. 2069-2072.

Buja, A., and Asimov, D. 1985. Grand Tour methods, an outline. Proc. 17th Symp. on the
Interface, Computing Science and Statistics.

Burke, R.M., Lunstrom, S., Harden, J., Gillespie, A.R., and Berry, M. 1986. Soil
chronosequence on eastern Sierra Nevada fans, CA, supports remote sensing studies.

18(6):553.

Chittmeni, C. B. 1981. Estimation of proportions in mixed pixels through their region
characterization. Proc. Machine Processing of Remote Sens. Data Symp., Purdue
Univ., West Lafayette, IN, p. 292-303.

Chrien, T. G Green, R. O,, and Eastwood, M. 1990. Laboratory spectral and radiometric
calibration of AVIRIS. Proc, Aiborne Sci, Workshop: AVIRIS, Jet Propulsion Laboratory,
Pasadena, CA., 4-5 June. This volume.

Clark, R. N, Mrddlebrook B., Livo, E., and Gallagher, A. 1990. Material absorption band depth
mapping of imaging spectrometer data using a complete band shape least-squares fit
with library reference spectra. Proc, Airborne Sci. Workshop: AVIRIS, Jet Propulsion
Laboratory, Pasadena, CA., 4-5 June. This volume.

Conel, J. E., and Aliey, R. A. 1984. Lisbon Valley, Utah, uranium test site report. /n The Joint
W&E@&ﬂﬁmﬂ Part 2, Vol. 1, Sec 8 (Paley, H. N., ed.),
AAPG Bookstore, Tulsa, OK, pp. 1-101.

Conel, J. E., Breugge, C., Carrere, V., Green, R. O., and Hoover, G. 1990. Validation of in-flight
recovery of atmosphenc water vapor. ELQQ.._ALLDQLDQ_S_QL_!ALQ_LK.SDQL‘_AMLB.I.S Jet
Propulsion Laboratory, Pasadena, CA., 4-5 June. This volume.

Crist, E. P., and Cicone, R. C. 1984. Aphysrcally -based transformation of Thematic Mapper data
- the TM tasseled cap. JEEE Trans. Geosci, Remote Sens, (3) GE-22:256-263.

Detechmendy, D. M., and Pace, W. H. 1972. A model for spectral signature variability for
mixtures. B_e_m_ng_S_e_n_s._Eaﬂh_B_Qs_o_umes, Vol. 1., F. Shahrokhi, ed., Tullahoma, TN, p.
596-620.

Diner, D. J., and Martonchik, J. V. 1984, Atmospheric transfer ot radiation above an
inhomogeneous non-Lambertian reflective ground - I. Theory. J,_Quant. Spectros.
Bad. Transf. 31:97-125.

Dozier, J. 1981. A method of satellite identification ot surface temperature fields of subpixel
resolution. Bemote Sens, Environ. 11:221-229.

Fox, L. Ill, Fischer, A. F. lll, Gillespie, A. R., and Smith, M. O. 1990. Investigation of AVIRIS
imagery for apphcatron in drtterennatmg soil chronosequences. Proc, Airborne Sci,
Workshop: AVIRIS, Jet Propulsion Laboratory, Pasadena, CA., 4-5 June. This volume.

267



Gao, B-C, and Goetz, A. F. H. 1980. Column atmospheric water vapor retrieval from airborne
spectrometer data. J, Geophys. Bes, in press.

Gillespie, A. R., Abbott, E. A., and Hoover, G. 1986. Spectral basis for relative dating of granitic
alluvial lans Owens Valley, CA (abs.). Geol, Soc, Am, Abstr, with Program 18:614.
Gillespie, A. R., Smith, M. O., Adams, J. B., and Willis, S. C. 1990. Spectral mixture analysis of
mulllspeclral thermal infrared lmages WMMIIMS JPL

Publication 90-55, Jet Propulsion Laboratory, Pasadena, CA., 6 June 1990.

Goetz, A. F. H., and Boardman, J. W. 1989. Quantitative determination of imaging spectrometer
specmcatlons based on spectral mixing models. Pro¢, IEEE Intl. Geosci, and Remote
Sens, Symp, '89 pp. 1036-1039.

Goetz, A. F. H., Rowan, L. C., and Kingston, M. J. 1982. Mineral identification from orbit: Initial
results from the shuttle multispectral infrared radiometer. Science 218, 1020-1024,

Goetz, A. F. H., Vane, G., Solomon, J. E., and Rock, B. N, 1985. Imaging spectrometry for earth
remote sensing. Science 228:1147-1153.

Green, R. O., Carrere, V., and Conel, J. E. 1989. Measurement of atmospheric water vapor
using the Airborne Visible/Infrared Imaging Spectrometer. Proc, 12th Workshop on

ing, Am. Soc. Photogramm. Remote Sens., in press.

Green, R. O., Conel., J. E., Bruegge, C., Carrere, V., Margolis, J., and Hoover, G. 1990.
Laboratory speclral and radiometric callbratlon of AVIRIS. Erg_Q_Ambgmg_S_QL_wQusangp_.
AVIRIS, Jet Propulsion Laboratory, Pasadena, CA., 4-5 June. This volume.

Hallum, C. R. 1972. On a model for optimal proportions estimation for category mixtures. Proc,
Eighth Intl Symp. Remote Sens. Environ,, Ann Arbor, MI, p. 951-958.

Hapke, B. 1981. Bidirectional reflectance spectroscopy 1. Theory. J,_Geophys, Res.
89:6329-6340.

Heimes, R. C. 1977. Effects of scene proportions on spectral reflectance in lodgepole pine.
Unpublished Master's thesis, Colorado State Univ., Fort Collins, CO.

Horwitz, H. M., Lewis, J. T., and Pentland, A. P. 1975. Estimating proportions of objects from
multispectral scanner data. ' Final Report, NSAS Contract NAS9-14123, NASA-CR-
141862, 108 p.

Horwitz, H. M., Nalepka, R. F., Hyde, P. D., and Morgenstern, J. P. 1971. Estimating the
proporllons of ob|ects within a smgle resolution element of a multispectral scanner.

, Ann Arbor, MI, p. 1307-1320.

Huete, A. R. 1986. Separation of soil-plant spectral mnxlures by factor analysis. Bemote Sens.
Environ, 19:237-251.

Huete, A. R., Jackson, R. D., and Post, D. F. 1985. Spectral response of a plant canopy with
different soil backgrounds. BRemote Sens, Environ, 17:37-53.

Jackson, R. D. 1983. Spectral indicies in n-space. Remote Sens. Environ. 13:409-421.

Johnson, P.E,, Singer, R. B., Smith, M. O., and Adams, J. B. 1990. Quantitative determination
of mineral abundances and pamcle sizes from reflectance spectra. J. Geophys, Res. in
press.

Johnson, P.E., Smith, M. O., Taylor-George, S., and Adams, J. B. 1983. A semiempirical
method for analysis of the reflectance spectra of binary mineral mixtures. J, Geophys,
Bes, 88:3557-3561.

Kauth, R. L., and Thomas, G. S. 1976. The tasseled cap - a graphic description of the spectral
temporal development of agricultural crops as seen by Landsat. Proc. 3rd Symp.
Machine Processing of Remote Sens. Data, LARS, Purdue, pp. 4B/41-4B/51

Marsh, S. E., Switzer, P., Kowalik, W., and Lyon, R. J. P. 1980. Resolvmg the percentage of
component lerrams within smgle resolution elements. Photogramm. Engr. and Remote
Sens, 46:1079-1086.

Moore, J. G. 1963. Geology of the Mount Pinchot Quadrangle, southern Sierra Nevada,
California. U. S. Geol. Survey Buli. 1130, 152 p.

Mustard, J. F., and Pieters, C. M. 1986. Quantitative abundance estimates from bidirectional
reflectance measurements. J, Geophys. Res. pp. E617-E626.

Mustard, J. F., and Pieters, C. M. 1987. Abundance and distribution of ultramafic microbreccia in
Moses Rock dike: Quantitative application of mapping spectroscopy. J. Geophys, Res.
92:10376-10390.

268



. Nalepka, R. F., and Hyde, P. D. 1972. Classifying unresolved objects from simulated space
data. Emjmmmmmmumﬁammsﬁensﬁmm Ann Arbor, Ml, p. 935-949.

Nash, D. B., and Conel, J. E. 1974. Spectral reflectance systematics for mixtures of powdered
hypersthene, labradorite, and ilmenite. J, Geophys, Res. 79:1615-1621.

Otterman, J., Ungar, S., Kaufman, Y., Podolak, M. 1980. Atmospheric effects on radiometric
imagmg from satellutes under low optical thickness conditions. Remote Sens Environ,
9:115-129.

Pace, W. H., and Detechmendy, D. M. 1973. A fast algorithm for the decomposition of
multispectral data into mixtures. Bemote Sens, Earth Resources, Vol. Il,, F. Shahrokhi,
ed., Tullahoma, TN, p. 831-848.

Pech, R. P., Graetz, R. D., and Davis, A. W. 1986. Reflectance modelling and the derivation of
vegetation indicies for an Australian semi-arid shrubland. Intl. J. Remote Sensing 7:389-
403.

Pieters, C. M., Adams, J. B., Mouginis-Mark, P. J., Zisk, S. H., Smith, M. O., Head, J. W., and
McCord, T. B. 1985. The nature of crater rays: The Copernicus example. J, Geophys.
Bes. 90:12392-12413.

Possolo, A., Adams, J., and Smith, M. 1990. Mixture models for multispectral images. 4.
Geophys, Res., submitted.

Ranson, K. J. 1975. Computer assisted classification of mixtures with simulated spectral
signatures. Unpublished Master's thesis, Colorado State Univ., Fort Collins, CO.
Ranson, K. J., and Daugherty, C. S. T. 1987. Scene shadow effects on multispectral response.

GE-25(4):502-509.

Reid, M. J., Gancarz, A. J., and Albee, A. L., 1973. Constrained least-squares analysis of
petrologic problems with an application to lunar sample 12040. Earh Planet. Sci, Lett.
17:433-445.

Richardson, A. J., Wiegand, C. L., Gausman, H. W., Cuellar, J. A., and Gerbermann, A. H., 1975.
Plant, soil and shadow reflectance components of row crops. Photogramm. Engr.
Bemote Sens. 41:1401-1407.

Roberts, D. A., Adams, J. B., and Smith, M. O. 1990. Distribution of visible and near-infrared
radiant flux above and below a transmittant leaf. Bemote Sens. Environ., accepted.

Roberts, D. A,, Smith, M. O,, Adams, J. B., Sabol, D. E., Gillespie, A. R., and Willis, S. C. 1990.
Isolatlng woody plant matenal and senescent vegetation from green vegetation in
AVIRIS data. Prog. Airborne Sci. Workshop: AVIRIS, Jet Propulsion Laboratory,
Pasadena, CA., 4-5 June. This volume.

Sabol, D. E., Adams, J. B., and Smith, M. O. 1990. Predicting the spectral detectability of
surface materials usung spectral mixture analysis. Proc. Int, Geosci. Remote Sens,
Symposium '90 (IGARRS '90), 2:967-970.

Sacco, W. J., 1972. On mixture distributions in pattern recognition. [nformation Sciences
4:101:120.

Sasaki, K., Kawata, S., and Minami, S. 1983. Constrained nonlinear method for estimating
component spectra from multicomponent mixtures. Appl, Optics 22:3599-3603.
Shipman, H., and Adams, J. B. 1987. Detectability of minerals on desert alluvial fans using

reflectance spectra. J. Geophys. Res. 92:10391-10402.

Shippert, P., Bradshaw, G., and Willis, S. C. 1988. Washington Image and Spectral Package
(WISP): Preliminary Documentation. Remote Sensing Laboratory, AJ-20., Dept. of
Geological Sciences, University of Washington, Seattle, WA 98195, 194 pp.

Singer, R., and McCord, T. B. 1979. Mars: Large scale mixing of bright and dark surface
materials and implications for analysis of spectral reflectance. Proc. 10th Lunar Planet.
Sci. Conf, p. 1835-148.

Smith, M. O., and Adams, J. B. 1985a. Strategy for analyzing mixed pixels in remotely sensed
imagery Proc. NASA/JPL Aircraft SAR Workshop JPL Publ. 85-39, p. 47-48.

Smith, M. O., and Adams, J. B. 1985b. Interpretation of AlS images of Cuprite, Nevada, using
constraints of spactral mixtures. Proc. Airborne Imaging Specirometer Data Analysis

JPL Publ. 85-41, p. 62-68.
Smith, M. O., Adams, J. B., and Gillespie, A. R. 1988a. Evaluation and calibration of AVIRIS test-

flight data: Owens Valley, CA. Einal Report NASA CONTRACT No. NAGW 1135, 17 p.

269



Smith, M. O., Adams, J. B., and Gillespie, A. R. 1990c. Reference endmembers for spectral
mlxture analysas ELQQ,__im_A_us_LLa_aman_Q_QnL_Qn_B_emme_S_e_ng Perth, Australia, 8-12
Oct.

Smith, M. O., Johnson, P. E., and Adams, J. B. 1985. Quantitative determination of mineral
types and abundances from reﬂectance spectra using principal components analysis.

. , 90, Suppl., pp. C797-
Cc804.

Smith, M. O., Roberts, D. A,, Shipman, H. M., Adams, J. B., Willis, S. C., and Gillespie, A. R.
1988b Cahbratmg AlS images using the surface as reference Em_Aubgme__[magmg
Spectrometer Workshop [l (June), JPL Publ. 88-30, p 63-69, Jet Propulsion
Laboratory, Pasadena, California.

Smith, M. O,, Ustin, S. L., Adams, J. B., and Gillespie, A. R. 1990a. Vegetationin deserts: 1. A
reglonal measure of abundance from multispectral images. B_Qmsne_Se_ns._Eme_n
31:1-26.

Smith, M. O, Ustin, S. L., Adams, J. B., and Gillespie, A. R. 1990b. Vegetation in deserts: Il.
Environmental influences on regnonal abundance. Bemole Sens, Environ. 31:27-52.

Suits, G. H. 1972. The cause of azimuthal variations in directional reflectance of vegetative
canopies. Remote Sens. Environ, 22:175-182.

van den Bosch, J. M., and Alley, R. E. 1990. Application of LOWTRAN 7 as an atmospheric
correction to AVIRIS data. E_LQ_Q_.__A.L_D_QL[]_Q_S_QL_MLKS_DQQ,_AMIB_[S Jet Propulsion-
Laboratory, Pasadena, CA., 4-5 June. This volume.

Vane, G., and Goetz, A. F. H. 1988. Terrestrial imaging spectroscopy. BRemote Sens, Environ.
24, 1 -29.

270



