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Introduction 
  

The most popular software package for processing hyperspectral imagery is the 
Environment for Visualizing Imagery (ENVI) available from Research Systems, Inc.  Other lesser-
known software packages are available including the system developed at the U.S.G.S. 
Spectroscopy Laboratory call Tetracorder (previously known as Tricorder).  Tetracorder does not 
enjoy the notoriety of ENVI primarily because Tetracorder is a U.S.G.S. in-house tool used almost 
exclusively by the members of the U.S.G.S. Spectroscopy Laboratory.  Tetracorder has been 
used successfully on a number of studies including the Summitville mine in southwestern 
Colorado (King, et al., 1995), the Leadville superfund site (Swayze, et al., 1996) and Yellowstone 
Park (Kokaly, Clark, and Livo, 1998).  Another relatively unknown approach, but of interest 
because of its unique classification capabilities are Kohonen self-organizing maps (SOM).   

Each of these techniques was applied to the AVIRIS imagery of Copper Flat porphyry 
copper deposit (CFPCD) in south-central New Mexico.  The ENVI process is well documented, 
but it is still reviewed here.  Since Tetracorder has not been publicly released, only the essential 
elements are described in any detail.  The details of SOM are shown below.  Athough SOM are 
not a complete system, when used in conjunction with ENVI, they prove to be a useful addition to 
any hyperspectral toolkit.    
 

Hyperspectral Data Set – Site Description 

 
 NASA’s AVIRIS sensor was flown over the Copper Flat porphyry copper deposit in the 
summer of 1998.  The Copper Flat mine is 8 km NNE of the town of Hillsboro, New Mexico 
(Figure 1).  The Copper Flat mine is located in the Animas Hills and is part of the Hillsboro mining 
district of Western Sierra County, NM and is one of the older Laramide porphyry-copper deposits 
in the Arizona-Sonora-New Mexico porphyry-copper belt (McLemore, 1999).  The Animas Hills 
consist of a horst block located just west of the axis of the Rio Grande rift and are underlain by a 
circular block of andesite nearly 4 miles in diameter.   The thickness of the andesite and circular 
shape suggest that the andesite is a remnant of a Cretaceous caldera.  40Ar/39Ar data establish 
the age of the andesite at ≥ 74.93 ± .066 Ma (McLemore, et al., 1999).  A relatively small body of 
quartz monzonite intruded the andesite forming the entire CFPCD.  CFPCD is predominantly a 
low-grade hypogene deposit with thin veneer of supergene enrichment at the surface (McLemore, 
et al., 1999).  The numerous latite dikes radiating from the CF quartz monzonite also show 
significant mineralization.  The CFPCD has produced large quantities of Au, Ag, and Cu since the 
late 1800s.   

 



 

 

 
Figure 1 – Location of CFPCD in New Mexico.  The deposit is located about 15 km west of Truth 

or Consequences, NM. 
  

 
Preprocessing 

 
 To properly correct for atmospheric influences on the upwelling reflectance spectra, 
ground verification data was collected at the CFPCD mine site.  Ground verification areas were 
selected using the following constraints:  
 

1) Low relief;  
2) Spectrally flat;  
3) High reflectance;  
4) Cloudless sky;  
5) Solar Noon ± 1 hour; 
6) Sufficiently large area of uniform composition (greater than or equal to one pixel (20m 

x 20m));  
7) Ground verification data collected at the same time as the AVIRIS overflight 

occurred.   
 
Unfortunately, condition five could not be met during the 1998 AVIRIS overflight of CF. 
Nonetheless, within a few weeks on sight measurements were made using an ASD-FR 
spectrometer.  Two bulldozed areas located adjacent to the CF mine proved suitable for 
collection of spectra.  These spectra were used to refine the output from the atmospheric 
compensation software.   

Tetracorder, ENVI, or SOM require proper atmospheric corrections.  All three software 
techniques work well with the output from ATREM (ATmospheric REMoval Program) from the 
Center for the Study of Earth From Space (CSES) at the University of Boulder at Colorado (Gao 
and Goetz, 1990; Gao, Heidebrecht, and Goetz, 1999).  But there are a few problems with 
ATREM output requiring remediation. 

ATREM does not account for atmospheric path length on a pixel-by-pixel basis and it also 
overcorrects for the path radiance scattering in the atmosphere at blue to UV wavelengths 
yielding negative values.  These shortcomings are obviated using the following two-step 
approach: 

 
1. A radiative transfer correction is performed that tracks changing atmospheric 

water absorptions from pixel to pixel and removes the absorptions due to water 



 

 

and other atmospheric gases, scattering in the atmosphere, and the solar 
spectrum. 

2. The reflectance of known targets in the scene are used to correct the artifacts 
from the imperfect radiative transfer correction. The success of this method 
depends upon the accurate reflectance characterization of field calibration sites. 

 
These corrections produced a radiative transfer ground corrected image that formed the basis of 
this study. 

 
The Environment for Visualizing Images (ENVI)  

 
The ENVI approach for processing hyperspectral data consists of winnowing down the 

vast amount of information into a manageable subset.  ENVI treats the classification of the 
imagery data as a search.  As with most search strategies, the name of the game is to constrain 
the domain.  Constraining the search space makes finding a solution easier.  This constraining 
process results in likely endmembers, which are then used to classify the individual spectrum.  An 
endmember represents the purest “homogeneous” material from which other materials are 
created.  The data are then analyzed using the endmembers through a process of linear 
unmixing.   

The basis of linear unmixing is that most pixels are mixtures of substances.  Once all the 
endmembers are found in an image, all the remaining pixels are considered linear combinations 
of these endmember pixels.  While not absolutely true, it is a good first approximation.   

In reality, the world is populated with intimate mixtures, i.e., mixtures of materials whose 
reflectance spectrum is a product of nonlinear mixtures of reflectance spectra from different 
materials.  Unmixing these type of spectra is quite difficult and beyond the scope of this article. 

The first step in ENVI is to reduce the dimensionality of the hyperspectral data from, in 
the case of AVIRIS data, 224 channels down to 10-15 relevant channels containing 95-98% of 
the information in the image.  This is accomplished via a Minimum Noise Fraction (MNF) 
transform (Boardman and Kruse, 1994).  To prevent the MNF from focusing on the variation in 
the 1.4 & 1.9 um water absorption bands these portions of the spectra were omitted from MNF 
processing.   

Stated simplistically, the MNF transform is a cascade of translation, rotation, scaling and 
another rotation (essentially an affine transform).  MNF is a series of two Principal Components 
(PC) transformations resulting in a change of basis for the vector space as defined by the number 
of bands for each pixel in an image.  Most imagery data exhibit high band-to-band correlation 
(Figure 2).  Principal Component analysis significantly reduces band-to-band correlation.  This is 
achieved by rotating the coordinate axes so that the first axis is parallel to the maximum variance 
in the dataset.  The second axis (orthogonal to the first) is rotated around so that it is parallel to 
the next highest variance.  Subsequent orthogonal axes are rotated around so that they are 
parallel to smaller and smaller amounts of variance in the data.  The net result is that the first few 
PC contain most of the information in the data and the remaining PC axes contain most of the 
noise.  The dataset is thus reduced from 224 channels to 10-15 relevant channels.  The resulting 
PC channels, because they are no longer related to a specific wavelength, do not correlate to 
specific absorption features in reflectance space.    

The next step in ENVI hyperspectral processing procedure is based on fitting a simplex 
around a convex hull (Boardman, 1993).  A convex hull encloses all the data points in the n-
dimensional space of a hyperspectral image.  Theoretically, apices of the hypervolume represent 
pixels composed purely of one material or endmember.  These apices are located by repeatedly 
projecting the data space onto a unit vector (Boardman, Kruse, and Green, 1995).  Pixels located 
the farthest out on the unit vector are counted as potential endmembers.  Those pixels with the 
highest number of occurrences as an outlying pixel are considered apex or endmember pixels.  
Endmember pixels are further narrowed by visualizing the n-dimensional space and projecting 
 



 

 

 
Figure 2 – Highly correlated data and the resulting principal component axes. 

 
them into 2-dimensional space.  This process greatly aids the location of endmembers by 
permitting similar pixels to be grouped together.   

At this point, endmember pixels of the purest material content have been found.  The 
next step is to classify the imagery.  There are numerous methods available within ENVI, but we 
chose to use the ENVI’s implementation of the Cauchy-Schwarz Inequality (CSI) called Spectral 
Angle Mapper (SAM).  A chief advantage of CSI is that it ignores variations in albedo, so pixels 
with similar spectral shapes, but different reflectance intensities are considered the same. CSI is 
based on the relationship that the cosine of the angle between two vectors is the quotient of inner 
dot product of two vectors divided by the product of the magnitude of those two vectors (Equation 
1).  CSI generates the angle between two vectors as a measure of their similarity, i.e., the smaller 
the number, the more similar the spectrum between pixels.   
 

θcos  = vu
vu,

 where πθ ≤≤0                                             (1) 

 
ENVI is fast and the method is intuitive.  Endmembers are readily identified, but actually 

determining the mineralogy within each pixel is not easy even using ENVI’s built-in expert system, 
the Spectral Analyst.  
 The results of applying ENVI to the CF AVIRIS imagery are shown in Figure 3.  The 
primary endmember spectra plots are shown in Figure 3.   
 

Self-Organizing Maps 
 

A Kohonen Self-Organizing Map (SOM) is an array (1 or more dimensions) of nodes 
(Kohonen, 1986).  Each node is composed of a unit vector pointing in a random direction in n-
dimensional space.  After normalization, multi-dimensional data are presented to each of the 
individual nodes.  Using a "winner-take-all" learning strategy, the node whose vector most closely 
matches the input data is found.  This winning vector incorporates, or adjusts, its vector weights 
to match the input data.  Vectors in the nodes surrounding the winning node are modified to look 
less like the input vector.  In this manner, each node in the SOM internally develops the ability to 
recognize vectors similar to itself.  This is referred to as self-organization, i.e., no external 
information is supplied to lead to correct classification.    

Two useful features of a SOM are its topology preserving capability and the automatic 
generation of probabilities for a dataset.  Topology preserving means that the original 
relationships between the data points remain intact after processing.  This is exactly the desired 
result when working with hyperspectral data because it maintains the spectral relationships 
between pixels.  Secondly, as a SOM evaluates the data, it builds a statistical model or probability  



 

 

 

Figure 3 – Showing Fe-Clay endmembers resulting from ENVI processing.  The Fe absorption 
near 1000 nm and the Clay features near 2250 nm are evident in the endmember spectra. 

 
 
distribution, of the dataset spontaneously.  SOM perform this statistical modeling, even in cases 
where no closed form analytic expression can describe the distribution (Caudill, 1988). 
The SOM approach is an unsupervised clustering approach similar to the Iterative Self-
Organizing Data Analysis Technique (ISODATA) of Tou and Gonzalez (1974).  ISODATA 
interatively evaluates the imagery based on spectral distance.  Initially, the user specifies the 
number of nodes.  These nodes are then treated as cluster centers and pixels are included in the 
clusters based on user specified thresholds.  After each iteration, a new cluster mean is 
computed based on the actual spectral locations of pixels.  These new means are used in the 
next iteration.  The process continues until there is little change between iterations.    
 SOM are similar to ISODATA, but operate in a much more flexible manner.  Cluster 
centers are allowed to move about to account for topological relationships in the dataset.   

Output from the SOM is a series of spectra containing the average spectra for each 
cluster group.  For this example, the first 20 MNF transformed data bands were normalized to 
remove variation due to albedo and then presented to the SOM with the results shown in Figure 
4.  The first 20 MNF bands accounted for >95% of the variation within the dataset.  The SOM 
process classified the imagery into fifteen clusters, with thirteen having significant membership 
(more than 2 members).  

Tetracorder 
 
Tetracorder is a hyperspectral image processing software package developed at the U.S.G.S. 
Spectroscopy Laboratory.   Tetracorder is an extensible set of algorithms.  Because Tetracorder 
is a U.S.G.S. Spectroscopy Laboratory in-house tool it is not as well-known as ENVI.  Tetracorder 
was used for a number of studies including the Summitville mine in southwestern Colorado 
(Kinget al., 1995), the Leadville superfund site (Swayzeet al., 1996) and Yellowstone Park 
(Kokaly, Clark, and Livo, 1998).  The purpose of Tetracorder is to identify objects in imagery with 
certain absorption features using a spectral identification algorithm called the Band Mapping 
Algorithm (BMA) (Clarket al., 1990).  The basis for BMA is feature fitting.  BMA fits each spectral 
feature in a spectral library to the current spectrum of interest using a least-squares approach to 
absorption feature identification.   
 



 

 

 

Figure 4 – Classification results from Self Organizing Map.  This image results primarily 
from variations in reflection intensity 

 
 

The BMA measures the goodness of fit between a library reference spectrum and an 
unknown spectrum.  In preparation for using BMA, unique continua are created for each known 
mineral in a library of laboratory spectra.  The process of identifying an unknown mineral begins 
by removing the unique continuum from a “candidate spectra” in a spectral library.  Next, a 
continuum is calculated and removed from the unknown spectrum.  The two resulting continua-
removed spectra are compared and a goodness of fit value is calculated using a least-squares 
algorithm.  The correlation coefficient produced by the least-squares equation is the fit.  Multiple 
fits for different possible mineral candidates are calculated and compared with the best fit to 
determine the possible mineral present.  Final mineral selection is based on additional factors 
such as albedo and continuum slope.  The depth of the absorption feature from the continuum 
indicates relative abundance of a material and also serves as quality control related to spectral 
abundance.  From these calculations a fractional map indicating mineralogy and relative 
abundance is generated.  BMA has been subsequently expanded to simultaneously analyze 
multiple features in an unknown spectrum (Clark, et al., 1991).   

The preliminary results of applying Tetracorder to the CFPCD imagery are shown in 
Figure 5 (1 µm) and Figure 6 (2 µm) where identified Fe- and clay-bearing minerals were 
identified; respectively.  The results from the ENVI classification are similar to the Tetracorder 
results, but without the differentiation into the respective chemical constituents.  Tetracorder is 
only limited by its reference spectra library.  In the event that an observed spectrum (or 
absorption feature) is not in the reference library, then Tetracorder cannot readily identify the 
mineral.   

  
 



 

 

 

Figure 5 – 1 µm classification output from Tetracorder. 

 

Figure 6 – 2 µm output from Tetracorder.



 

 

Discussion 
 
 The results presented here are meant to highlight the primary techniques for processing 
hyperspectral imagery (HSI) data available today.  The techniques employed by ENVI and 
Tetracorder were developed along with the AVIRIS sensor.  In general ENVI and Tetracorder  
represent different approaches to processing and exploiting hyperspectral data.  ENVI relies 
heavily on endmembers, while Tetracorder does not (Figure 7).   

 
 

Figure 7 – Hyperspectral data processing flow showing where the respective software 
process is introduced to the data. 

 
Finding endmembers represents a possible precursor to determining a pixel’s content(s), 

but generally falls short of an actual pixel’s content identification.  Finding endmembers requires 
no a priori knowledge regarding image or pixel content.  In general, classification does not 
depend upon knowing the content of a pixel.  In this situation, the basic assumption is that all 
pixels are linear combinations of endmembers found at the apices of a convex hypervolume 
enclosing all the data.  Endmembers allow a user to group similar pixels in an image and 
determine pixel content later.  In ENVI, a user develops an n-dimensional solution space based 
on the whole spectrum.  Nothing more need be known about the spectra to group the data.  The  
user simply finds the endmembers and classifies the imagery based on a linear endmember 
mixing model.  If an endmember corresponds to a specific mineral, so much the better, but this is 
not often the case because very few pixels are homogeneous.  Subsequent processing is 
required to decompose and identify the constituents of each derived endmember.  ENVI tries to 
ameliorate this requirement by providing the Spectral Analyst, an expert system for identifying the 
contents of individual spectra.   

Tetracorder’s approach is to focus only on a pixel’s absorption features to directly assess 
a pixel’s content.  This has the limitation of not always being able to classify a pixel.  If 
Tetracorder does not have a desired absorption feature in it’s database of known spectra, it 
cannot identify the spectra and no solution is given.   



 

 

SOM are strictly a classification method that does nothing regarding absolute 
interpretation of pixel content.  The result of using SOM is that larger aggregates of minerals, i.e., 
rocks, are discernable in HSI data.  SOM represent another classification paradigm offering 
significant benefits for unsupervised image classification. 
 

Conclusions 
 

Tetracorder, ENVI, and SOM are all effective methods for gleaning information from 
hyperspectral imagery.  Each has its strength and weakness.  ENVI and SOM use endmembers 
while Tetracorder does not.  Tetracorder is better at finding individual minerals based upon 
absorption features.  None of these approaches is really a blackbox; most require a significant 
understanding of mineral spectroscopy and the process of hyperspectral remote sensing. 
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