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1. Introduction 
 An early handicap to the effective use of AVIRIS data was a lack of appropriate software (Vane and Goetz, 
1993).  With improvements to the AVIRIS sensor have also come improvements in the available software.  While 
there are a variety of software packages currently in use, a review of the recent literature indicates that most users of 
AVIRIS data are using the commercial ENVI software.  The documentation provided with the ENVI software (RSI, 
2000) is generally quite adequate; however, specifics on how most processing routines are implemented are not 
provided.  Moreover, the source code for ENVI routines are not readily available, thus the user who is curious about 
how certain algorithms are implemented is left with few options.  The objective of this paper is to provide a 
comparison of how ENVI implementations of several mapping algorithms perform against implementations of those 
routines coded by the author from the original published algorithms.  The mapping algorithms examined in this 
work are: linear spectral mixture analysis, constrained energy minimization/matched filtering, and band mapping.  
The ENVI routines used were from ENVI version 3.4 software release. 
 
2.  Spectral Mixture Analysis 
 While the ENVI User’s Guide provides several references for linear spectral mixture analysis, the author 
compared results obtained from the ENVI “Linear Spectral Unmixing” module with those obtained from the 
algorithm developed at the University of Washington and described by Adams et al. (1993) and in earlier papers 
such as Smith et al. (1990), Possollo et al. (unpublished manuscript), and Gillespie et al. (1990).  This algorithm will 
henceforth be referred to as the “UW algorithm.” 
 
 The basis of linear spectral unmixing is to model the response of each spatial element as a linear 
combination of endmember spectra.  The basis equation for linear spectral mixture analysis (SMA) is: 
 

r(x,y) = αM + n 
 
where:       r(x,y) = the relative reflectance spectrum for the pixel at position (x,y) 
      α = the vector of endmember abundances 
      M = the matrix of endmember spectra 
      n  = the vector of residuals between the modeled and the measured reflectances 
 
The result of Spectral Mixture Analysis (SMA) is a series of “fraction images” for each endmember wherein the 
data numbers range, ideally, between 0 and 1.  Fraction image pixels with a DN of 0 are taken to be devoid of the 
endmember material.  Fraction image pixels with a DN of 1.0 are taken to be completely covered with the 
endmember material. 
 

The implementation of SMA in ENVI appears to be a relatively straightforward implementation that uses 
Singular Value Decompositon (SVD) to determine endmember abundances as detailed in Boardman (1989).  The 
implementation of SMA described in the earlier references is slightly different in the way that it treats a “shade” 
endmember.  The shade endmember is not a physical material but rather represents the “dark point” in the image 
scene; i.e., an ideal shade endmember would be a shadowed surface with zero reflectance at all wavelengths.  While 
shade is not necessary for all analyses in which SMA can be used, it can be quite helpful for use in areas with 
substantial topographic relief, for use with forested scenes (to help determine canopy shade), or as a measure of 
surface roughness.  Also, the procedure described in the ENVI User’s Guide (RSI, 2000) for determining image 
endmembers almost always leads to the selection of a dark point image endmember.  This ENVI method for  
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A.   B.  
 
Figure 1. Comparison of shade images for AVIRIS scene over Lunar Crater Volcanic Field, Nevada, derived from 
applying SMA as implemented in A. ENVI and B. UW algorithm. Fraction images have been stretched between 0 
and 1.  The prominent diagonal cutting across the lower left corner represents shadows cast by a major cliff face. 
 
determining image endmembers (eg., Boardman and Kruse, 1994) starts with the use of a Minimum Noise Fraction 
(MNF)  transform to reduce spectral dimensionality.  This is followed by the Pixel Purity Index reduction to find 
“spectrally pure” pixels.  Finally, the ENVI n-dimensional visualization tool is used to find extreme “vertex” pixels 
at the edges of the n-dimensional data cloud.  As mentioned above, in this author’s experience if there is any 
significant shadowing in the scene, these “dark point” pixels will cluster together and generally constitute one of the 
more prominent clusters in the n-D data cloud.  The user who selects these “shade” pixels might want to use them as 
an endmember in SMA.  Thus, it is appropriate to determine how well the ENVI implementation of SMA treats 
shade.   
 
 The way that shade is handled in the UW algorithm is that: 
1. the shade endmember spectrum is first subtracted from all other endmember spectra (eg., the “material” 

endmembers), 
2. the endmember matrix is inverted to derive endmember fractions2, 
3. the sum of the material fraction images is subtracted from 1.0 and this difference is taken to be the shade 

fraction image. 
 

The analyst who includes shade as an endmember with the ENVI “Linear Spectral Unmixing” module is 
including shade as a material endmember.  Given the low data values in the shade endmember spectrum, erroneous 
fraction images can potentially result.  Figure 1 shows shade fraction images derived from a 1994 AVIRIS scene of 
the Lunar Crater Volcanic Field in Nye County, Nevada.  There are few if any substantive differences between the 
two fraction images.  Shadowed to dark areas are bright as is expected.  DN values of both fraction images are 
generally between 0 and 1.0 for both.  This result ran counter to expectations since the author has observed flaws in 
shade fraction images derived from using the ENVI SMA implementation in past work.  Specifically, when applied 
to lower dimensionality, multispectral data erroneous shade fraction images can result.  An example is provide in 
Figure 2 wherein the same AVIRIS scene has been spectrally resampled to match the spectral bandpasses of the nine 
visible through SWIR channels of the ASTER sensor (Abrams, 2000).  In this case, there is a marked difference 
between the two shade fraction images with the one derived from ENVI having erroneous shade fractions.  The 
actual data values for the ENVI derived shade fraction image shown in Fig. 2a are all negative while those for the  
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Figure 2. AVIRIS scene from Fig. 1 was resampled to ASTER Visible-SWIR bandpasses and SMA was applied.  A. 
ENVI derived shade fraction image B. Shade fraction image derived from application of UW algorithm. 
 
shade fraction image derived from the UW algorithm are predominantly between 0 and 1.0 as is desired for a 
fraction image. 
 
 While the straightforward linear spectral unmixing algorithm of ENVI does not handle shade in the same 
manner as the UW algorithm, the procedures implemented in the latter algorithm can be carried out entirely in 
ENVI.  The ENVI “spectral math” routine can be used to subtract the shade endmember from the material 
endmembers.  The ENVI linear spectral unmixing routine can be run using just the material endmembers.  Then, 
using ENVI’s “band math” routine, the sum of the material endmembers can be subtracted from 1.0 to produce a 
shade fraction image. 
 
3.  Constrained Energy Minimization/Matched Filter 
 ENVI has an implementation of a routine under the name of “Matched Filter” (MF) which is essentially the 
same algorithm described by Harsanyi (1993) and Farrand and Harsanyi (1997) as “Constrained Energy 
Minimization” (CEM).  The CEM method is based on the linearly constrained adaptive beam-forming problem from 
the signal processing community.  The solution to this problem is to minimize the average power received by a 
multielement antenna array subject to the constraint that a constant, unity response in the presumed direction of the 
target signal is maintained.  In the instance of CEM/MF, a vector operator w is determined that suppresses the 
unknown and undesired background spectra while enhancing that of the known target spectrum, d.  The operator, w, 
is defined by constraints to minimize the total output energy of all pixels and to require that when the operator is 
applied to the target signature, the output is 1.0.  A solution that meets these constraints is provided by: 
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where: -1
rR  = the inverse of the sample correlation matrix of the hyperspectral scene.  Since R is ill-conditioned 

for hyperspectral images, it is difficult to calculate R-1.  To circumvent this difficulty, the sample correlation matrix 
can be approximated by: 
 

R = VΛVT 
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Figure 3: A. ENVI Matched Filter fraction image of red cinders for Lunar Crater Volcanic Field AVIRIS scene.  
Contrast stretch 0 to 1.0.  B. CEM fraction image of red cinders for same scene with contrast stretch from 0 to 1.0. 
C. Same image as A. with no stretch.  D. Same image as B. with no stretch. 
 
where: V is a matrix populated by the eigenvectors of the sample correlation matrix, and Λ is a diagonal matrix 
with the eigenvalues of the sample correlation matrix.  V can be approximated by a smaller matrix populated just  
with the first p significant eigenvectors.  How to determine the value of p (i.e., how many significant eigenvectors 
are there?) can be somewhat subjective and in the author’s experience the best results have been achieved by  
sometimes running CEM several times using a different number of significant eigenvectors each time.  
Unfortunately, the ENVI implementation of Matched Filter does not allow the user to specify the number of 
principal eigenvectors that will be used.  Boardman (personal communication) suggests that this becomes a non-
issue if MF is run not against the original AVIRIS data (or AVIRIS data converted to reflectance as was done in this 
study), but against the MNF-transformed data.  However, this approach is not mentioned in the ENVI User’s Guide; 
thus, the author compared results obtained from CEM, using a personally determined optimum number of principal 
eigenvectors, with those obtained running the ENVI MF routine against a non-MNF transformed AVIRIS scene.  
Figure 3 shows fraction images obtained from ENVI MF and from CEM for a red cinder target signature on the 



same LCVF AVIRIS scene used above.  Although the results are different, both are acceptable fraction images of 
the cinders; however, the unstretched versions of the images show a higher response from background materials in 
the MF image than in the CEM image- indicating a sub-optimal suppression of those background signatures. 
 
 Given that routines such as MF are often used for mineral exploration, a trial was also conducted using 
1998 AVIRIS data collected over the Tushar Mountains/Marysvale mining district in central Utah (Farrand, 2000; 
Rockwell et al., 2000).  In the author’s experience, when mapping minerals whose diagnostic spectral features are in 
the SWIR (eg., alunite, kaolinite, etc.), the best results are obtained using a subset of SWIR channels.  Likewise, 
when mapping Fe3+ - bearing minerals such as hematite and goethite, the best results are obtained using a VNIR 
only subset.  This approach was pursued in this trial.  Also, in this instance since the AVIRIS data were of high 
quality and there were excellent exposures of the target minerals, library spectra (from the USGS spectral library, 
Clark et al., 1993) were convolved to AVIRIS bandpasses and used as the target spectra.  The results are shown in 
Figure 4 for a trial with kaolinite and in Figure 5 for a trial with hematite.  It can be seen that the CEM and MF 
results for kaolinite are nearly identical while those for hematite show, as in the LCVF example above, a relatively 
high response from background materials for the MF versus the CEM image.  The better performance of MF in the 
SWIR is attributed to a better ability to detect the proper cut-off point for the number of principal eigenvectors used 
in the suppression of the undesired background.  There are more complicating background materials (primarily 
vegetation) with responses in the VNIR which make the selection of a proper number of principle eigenvectors more 
of a challenge for that spectral range.  
 
4.  Spectral Feature Fitting 
 Clark et al. (1990) described the algorithm that was the basis of what would evolve into the current USGS 
Tetracorder algorithm (Clark, 2001).  While the current version of Tetracorder is a complex expert system, the basis 
algorithm is relatively simple.  The “band mapping algorithm” described by Clark et al. (1990) is briefly 
recapitulated below.  To map a given mineral with a specific absorption feature, for example, the 2.21 µm kaolinite 
doublet, a high resolution laboratory spectrum is re-sampled to the spectral resolution of AVIRIS.  The spectrum is 
sub-sampled to match the specific absorption feature (i.e., only bands from the short wavelength shoulder of the 
absorption to the long wavelength shoulder are included).  A straight line continuum (calculated based on a line 
between the two band shoulders) is divided out from both the laboratory and the AVIRIS spectra.  The contrast 
between the library and the AVIRIS spectra are mitigated through the use of an additive constant, k.  This constant is 
incorporated into a set of equations which are solved through the use of standard least squares. 
 
 

A.  B.  
 
Figure 4.  Comparison of fraction images derived for a library kaolinite target signature over the eastern Tushar 
Mountains/Marysvale mining district using A. ENVI Matched Filter (MF), and B. Constrained Energy Minimization 
(CEM).  Images have been stretched between 0 and 1. 
 
 
 



A.  B.  
 
Figure 5. Comparison of fraction images derived for a library hematite target signature over the eastern Tushar 
Mountains/Marysvale mining district using A. ENVI Matched Filter (MF), and B. Constrained Energy Minimization 
(CEM).  Images have been stretched between 0 and 1. 
 
 The result of the Clark et al. (1990) band mapping algorithm are two data numbers per spatial sample of the 
AVIRIS scene.  First the band depth of the feature is calculated, and second a goodness-of-fit parameter is 
calculated.  These two parameters are most often combined in a band depth times goodness-of-fit image. 
 
 The “Spectral Feature Fitting” routine incorporated in ENVI presumably uses similar equations to those 
recounted by Clark et al. (1990), but the basis equations for the ENVI algorithm are not provided in the ENVI 
User’s Guide.  Indeed, the output from the ENVI algorithm is rather different from that of the USGS band mapping 
algorithm.  The output consists of a “scale” image, which appears comparable to the band depth image output by the 
band mapping algorithm, and a root mean square (rms) error image is also output.  Presumably, the latter is the 
actual rms error of the fit between the library and the AVIRIS spectrum.  The two images can be combined by 
dividing the scale image by the rms error image. 
 
 The author coded the band mapping algorithm described by the Clark et al. (1990) paper and compared 
results with those obtained by ENVI for the AVIRIS scene covering the eastern Tushar Mountains and Marysvale 
mining district in central Utah.  Maps were produced of kaolinite, illite, and alunite.  There were no substantive 
differences between the band depth times goodness-of-fit images derived from the band mapping algorithm and the 
scale/rms error images derived from the ENVI “spectral feature fitting” routine. 
 
5.  Conclusions 
 This study presented a comparison of the results obtained from implementations of published algorithms 
coded by the author and ENVI implementations of the corresponding algorithms.  The linear spectral unmixing 
algorithm implemented in ENVI handles a “dark point” or “shade” endmember differently than the published 
Adams et al. (1993) spectral mixture analysis algorithm (SMA).  It was found that using high dimensionality 
AVIRIS data, the dark point endmember could still be used to produce a reasonable fraction image; however, using 
lower dimensionality simulated multispectral data, the ENVI implementation of SMA produced an unreasonable 
“shade” fraction image. 
 
 In a comparison of Constrained Energy Minimization (Harsanyi, 1993; Farrand and Harsanyi, 1997) versus 
the ENVI implementation of the equivalent Matched Filter algorithm, it was found that results were generally 
similar; however, for materials whose primary spectral expression lie in the VNIR, the ENVI MF routine provided a 
sub-optimal suppression of the background.  However, the performance of the MF routine can supposedly be 
enhanced by using it against MNF-transformed data (Boardman, personal communication). 
 
 It was found that results from the ENVI “spectral feature fitting” routine were essentially the same as those 
obtained from the Clark et al. (1990) band mapping algorithm.  In using either approach, the analyst must exercise 



care to use only those channels covering the absorption band of interest.  In an early trial, the author used most of 
the AVIRIS spectrometer D channels with the ENVI “spectral feature fitting” algorithm and the results were 
inaccurate compared to those obtained in later trials using more precise spectral subsections covering just the 
absorption features of interest. 
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