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1.0 Introduction 
  
The High Plains of the United States is a 100,000 sq. km continental grain-producing region.  In the last 

10,000 years, following the last ice age, the sand dunes in this region have been reactivated at least four times  
(Muhs and Maat, 1993).  These dune reactivations were caused by droughts of greater magnitude than those that 
caused the dust bowl in the 1930s.  With the threat of warmer temperatures and drier conditions associated with 
global climate models, drought-like conditions can cause a decrease in natural vegetation, soil moisture, and 
evapotranspiration (Forman et al, 1992).   Overgrazing can reduce the vegetative cover stabilizing these dunes as 
well.  These conditions could serve to reactivate dunes currently stabilized by natural vegetation and in some areas, 
sandy soils that are being cultivated. 

 
Mapping of fractional vegetative cover of less than 30% is necessary for predicting dune reactivation since 

it is beneath 30% vegetative cover that sand begins saltating (Pye and Tsoar, 1990; Buckley, 1987).  Landsat 
Thematic Mapper provides a historical perspective, allowing one to study change over time.  One unknown of using 
Landsat TM to study fractional vegetation cover in a semi-arid region is how accurately it can detect low fractions of 
vegetation and distinguish NPV (non-photosynthetic vegetation) from soil.  Sohn and McCoy (1997) took field 
measurements of vegetation fractions in an arid region and compared them to mixture analysis fractions derived 
from their Landsat 5 data.  The Landsat data consistently under-reported vegetation fractions less than 30% (Sohn 
and McCoy, 1997).  The under-reporting of vegetation fraction can be a result of background effects from soil as 
well as the signal to noise ratio of the instrument (Smith, 1990).  A better understanding is needed of Landsat’s 
ability to map fractional cover in semi-arid regions. 

 
The study undertaken in this paper is to compare the ability of Landsat 7 data to map cover types on the 

High Plains using AVIRIS as a baseline.  We applied spectral mixture analysis methods to arrive at fractions of 
cover for both Landsat 7 and AVIRIS using AVIRIS endmember bundles for the unmixing.  

 
2.0 Methods 
 
2.1 Site Description 
 
 The AVIRIS lines used in this study include sections of the Ft. Morgan Dune Field in northeastern 
Colorado (See Figure 1).  The Ft. Morgan dune field, as well as other major dune formations in Colorado, and the 
High Plains are formed by prevailing northwest winds  (Stokes and Swinehart, 1997).   The Morgan County dunes 
are parabolic or compound parabolic dunes with arms pointing upwind that can be up to several kilometers long 
(Forman et al, 1992).  Vegetation is usually thickest on the lower slopes and sparse to absent near the nose of the 
dunes (Pye and Tsoar, 1990). 
 
2.2 AVIRIS Lines 
 

The AVIRIS data were collected on July 10, 1999 beginning at 10:04 am MDT.  The Landsat 7 scene 
corresponding to this area was collected at 11:30 am MDT.  The line used in this study is eight and a half degrees 
off of the solar principal plane—resulting in minimal BRDF effects.  The northeast-southwest trending flight line is 



51 degrees off of the principal solar plane, and analysis of these data has shown significant BRDF effects in the 
forward scattering direction.  The soil calibration site, however, is in the center of this line where BRDF effects 
should be minimal. 

 

 
 

 
2.3 Atmospheric Correction 
   

ATREM was performed on the AVIRIS data to remove atmospheric scattering and absorption features 
(Gao et al, 1993).  Field spectra of bare soil were acquired at the Wager’s farm near Brush, Colorado with an ASD 
Field Spectrometer (See Figure 2).  The mean soil field spectrum was used as a ground correction to remove 
systematic and modeling errors from the resulting ATREM reflectance values.  The Landsat 7 data were 
atmospherically corrected by performing a dark object subtraction (Chavez, 1996) followed by a ground calibration 
with the mean soil field spectrum convolved to Landsat 7 bandpasses.  

 



 
Figure 2. Mean soil field spectrum used in the atmospheric correction  

of the AVIRIS and Landsat 7 data. 
 

2.4 Georegistration and Data Preparation 
 

In order to make the AVIRIS scene used in this study comparable to the Landsat 7 area, the AVIRIS data 
had to be geocorrected.  These data were acquired on the ER-2 aircraft and there was significant pitching.  This year, 
the ER-2 had a GPS-INS mounted on-board.  With the data collected from the GPS-INS, precise location of each 
pixel can be achieved.  The Boardman Algorithm for geocorrection utilizes these data in “moving” pixels to the 
proper spatial location (Boardman, 1999).  The AVIRIS data, once corrected, were warped to Landsat 7 
geocorrected imagery for better agreement using nearest neighbor resampling to best preserve the radiometry of the 
AVIRIS data.  The Landsat 7 data were resampled to match the 17.2 meter pixels of the AVIRIS data.  This was 
done to preserve the integrity of the AVIRIS data since they are the basis of comparison in this study.  

 
The endmembers were selected using ENVI’s Pixel Purity Index following a Minimum Noise Fraction 

transformation (Boardman and Kruse, 1994).  The purest pixels were input into N-dimensional visualization and 
endmembers were selected from the corners of the simplex (Boardman, 1993).  Pure spectra were grouped into 
green vegetation, NPV, and soil bundles. Spectra that were obvious mixtures were not used in this study, i.e., spectra 
that clearly have a green vegetation sig�����������	���
�����	������������� ����������
�����������������	���
feature.  See Figure 3 for sample soil and green vegetation AVIRIS spectra convolved to Landsat 7 bandpasses.  See 
Figure 4 for a plot of AVIRIS endmember bundles and AVIRIS endmember bundles convolved to Landsat 7 
bandpasses.  

 
 

Figure 3. Landsat 7 filter response functions and 
spectrally resampled spectra. 



 

 
Figure 4. AVIRIS endmembers (EMS) on the left and AVIRIS  endmembers convolved to Landsat 7 bandpasses on the right.  



 
 

2.5 AutoSWIR and AutoSMA 
 

AutoSWIR and AutoSMA are methods developed by Asner and Lobell (2000, in press) and Asner et al (in 
review), respectively, that incorporate the Monte Carlo algorithm in selecting endmember combinations to unmix on 
the pixel level.  AutoSWIR concentrates on the 2100-2400 nm (SWIR 2) region of the solar reflected spectrum as 
the differences in the physical properties of surface materials, i.e., green vegetation, soil, and NPV, are more 
distinguishable from one another in this region.  This method uses field-collected spectra “tied” to one wavelength 
to minimize albedo variations. 

Unmixing with AutoSWIR and AutoSMA is unconstrained linear spectral unmixing with a Monte Carlo 
approach to maximize the incorporation of endmember variability in a given pixel.  Bateson et al (1998) explains 
that the inherent variability in vegetative canopies makes unmixing a pixel with a single endmember spectrum often 
prone to error.   Both AutoSWIR and AutoSMA make use of endmember bundles to better encompass the variability 
of natural surfaces.   
  
2.6 Application of AutoSMA 

 
The process used in this study, AutoSMA, was developed by Asner et al (in review) for better applicability 

to Landsat data.  It differs from the AutoSWIR method in that it uses full spectrum linear unmixing instead of only 
using SWIR 2 tied spectra.  The Monte Carlo approach and the incorporation of endmember bundles is still used in 
this algorithm.  The application of this method to this study is described below: 

 
• Full spectrum endmembers of each cover type are selected from the AVIRIS imagery and are grouped into 

bundles. 
• The algorithm randomly selects endmember combinations from the bundles. 
• The algorithm performs unconstrained linear spectral mixture analysis and computes a fractional cover for each 

endmember for a given pixel for a given run. 
• Upon the completion of a user-defined number of runs, a mean cover fraction is computed for each cover type. 
• A standard deviation is also computed for each cover type based on the range of fractions computed for each 

pixel. 
• The process is repeated with AVIRIS endmember bundles convolved to Landsat 7 bandpasses. 
 
3.0 Results 
 
3.1 Comparison 
 
 Upon the completion of unmixing both sub-scenes, regions of interests were selected and mean and 
standard deviation values were taken for these regions.  Since the AVIRIS data have been georectified, these regions 
can easily be moved between the images.  As shown in Figure 5, all fractions are well correlated with very high R2 

values.  The fractions derived with AVIRIS bundles convolved to Landsat 7 bandpasses have slightly larger standard 
deviations, but the value computed with the AVIRIS data lies within this range.  The soil fractions have the smallest 
standard deviation of all the cover types, which can be attributed to the relative similarity of the spectra in the 
endmember bundle, since one soil type dominates this sub-scene (USDA, 1968).  The different “pure” soil spectra 
from this scene are associated with differences in topography and lack of completely bare soil regions in this scene, 
meaning a small contribution of other cover types to the soil spectra. 
 
 
 

 
 



 
Figure 6. Cover fractions derived from Landsat 7 and AVIRIS data.  Landsat 7 fractions are on the y-axis 

and AVIRIS fractions are on the x-axis. 
 



3.2 Recombination Spectra 
 
For each run in Monte Carlo Unmixing, a mean is computed for each of the randomly selected cover types.  

By inverting this process, i.e. multiplying the endmember selected by the fraction computed for each run, summing 
the fractions together and taking the resulting mean recombination spectrum, the results can be compared to the 
original spectrum.  While recombining spectra does not necessarily yield a unique answer, it is a good indicator that 
the algorithm is functioning properly and the resulting fractions are feasible (See Figure 7).  

 

 
 

Figure 7.  AVIRIS and Landsat 7 recombination spectra. 
 

4.0 Discussion and Conclusions 
 
4.1 Performance of Monte Carlo Unmixing 
 

One of the advantages of Monte Carlo Unmixing is achieving mathematically feasible results with less 
experimentation to find the proper endmember combination.  Though the dimensionality of the data is n+1, n being 
number of bands with coherent eigen images, there certainly exist many more substances on the ground than can 
ever be contained in the dimensionality of an image.  By incorporating multiple endmember unmixing, whether the 
spectra come from libraries, field data, or are image derived, there is an advantage over trying to unmix an area with 
a limited group of endmembers (Roberts et al, 1998).  When trying to unmix a region with a specific number of 



endmembers, there is the possibility that one of the endmembers may not exist in a pixel.  If the substance does not 
exist then a negative fraction is returned.  Constrained mixing, while producing results within the feasibility 
constraints, gives a false impression of what is present in a pixel, since fractions are being forced to be equal to one.  
By randomly creating endmember combinations, the inherent variability of an image pixel is more effectively taken 
into consideration.  The algorithm significantly cuts down on the time needed to determine the best endmember 
combination for a pixel.  
 
4.2 Using AVIRIS Derived Endmembers to Unmix Landsat 7 Data 
 
 Landsat imagery has only six bands coinciding with the range of AVIRIS.  The maximum number of 
dimensions that can be seen in Landsat data is seven.  The number of endmembers able to be uniquely distinguished 
is related to the number of dimensions.  There are many more substances that are spectrally unique enough to be 
called endmembers in AVIRIS data and still more may exist.  The incorporation of bundles in this method 
maximizes endmember variability since the resulting reflectance of a pixel is the result of interactions between soil, 
NPV, and green vegetation (van Leeuwen and Huete, 1996).  The unmixing being performed with both sensors is 
only with three endmembers at a time.  The solution for endmembers is underdetermined with both sensors. With 
AVIRIS having a higher spatial and spectral resolution than the Landsat instruments, we can say that although we 
cannot find these substances in Landsat data, they still exist.  By using the AVIRIS endmembers to unmix the 
Landsat data, the same reference points are used and the resulting fractions are directly comparable.  
 
4.3 Conclusions 
 
 Soil cover fractions for the Landsat and the AVIRIS data are very well correlated and have the smallest 
standard deviation of the cover types.  The fractions of green vegetation and NPV correlate well between AVIRIS 
and Landsat 7, but the Landsat 7 fractions have larger standard deviations and are less precise.  The AutoSMA 
procedure produces results that are within the feasibility constraints for both sensors.  The algorithm is fast and 
efficient in maximizing endmember variability and arriving at a plausible result. 
 

Incorporating AVIRIS spectra adds spectral leverage to the Landsat data.  There is a baseline for comparing 
the two sensors and determining Landsat 7’s performance using the AVIRIS data as a proxy for the gaps in Landsat 
7’s spectral range.  Preliminary results of unmixing Landsat 7 with Landsat 7-derived endmember bundles looks 
promising, but more work is needed to verify the consistency of Landsat 7 unmixing results. 
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