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Abstract. This paper describes and evaluates two Vector Quantization (VQ) approaches for
compressing high spectral resolution AVIRIS (Airborne Visible/Infrared Imaging Spectrometer)
image data by a factor of over 22. This highly compressed data is useful for "browsing" through
several data sets in order to select the best data sets for a particular application, or for
preliminary analysis. The two VQ approaches differ in the codebook generation methods, which
are Linde-Buzo-Gray (LBG) in one case and a Self Organizing Feature Map (SOFM) based on
neural models in the other. Both spectral and spatial correlations have been exploited to improve
on coding efficiency. The codebook generation and coding portions of these VQ algorithms
have been implemented on a massively parallel SIMD machine, the MasPar MP-1. However,
the reconstruction of the compressed data is a simple table lookup which is efficiently performed
on a sequential machine. The results are evaluated for accuracy by comparing the results from
detecting minerals with the SPAM (Spectral Analysis Manager) software package in the original
and reconstructed data sets.

1. Introduction

Each scene from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) consists of
over 140 megabytes of data. This large amount of data leads to significant difficulties in data
archival, access and dissemination of AVIRIS data. One area that data compression can be of
immediate assistance is in the access and dissemination of browse quality versions of AVIRIS
data for the selection and preliminary analysis of data from the AVIRIS data archive.

AVIRIS data contains a great deal of redundancy that data compression can exploit to
reduce data values by as much as 20 to 50 times. When compressed with appropriate techniques,
this highly compressed AVIRIS browse data appears visually very similar to the original data,
and still retains much of its scientific information content, making possible a preliminary
analysis of the data. Of course, the final analysis will require the original data, or data
reconstructed from a lossless compression of the data.

In earlier experiments [1], browse data with a compression factor of 18 was produced from
AVHRR (Advanced Very High Resolution Radiometer). This data was processed to obtain Sea
Surface Temperature (SST) maps. (SST maps are a standard product generated from AVHRR
data and ancillary data. These maps are regularly used by scientists who study the Earth's oceans
and climate.) For the best compression method, the mean error in the SST maps was only 0.5°C.

Unlike AVHRR data with 5 spectral bands, the AVIRIS data has as many as 224 spectral
bands. In performing VQ on this data, it must be judiciously grouped into vectors so both spatial
and spectral correlations are utilized. A small data cube of 128 rows by 256 columns of 32
spectral bands was used in these experiments. Training and coding were made computationally
efficient by (i) dividing the spectrum into four parts of eight bands each, and (ii) parallel
implementation on MasPar MP-1 massively parallel computer.

This paper describes and evaluates two Vector Quantization (VQ) compression approaches
for producing browse versions of AVIRIS data. In the first VQ approach the optimal codebook
is generated by well known Linde-Buzo-Gray (LBG) algorithm that is based on k-means
clustering algorithm. The second employs a more innovative technique called Self Organizing
Feature Maps (SOFM) based on the neural models due to Kohonen. The compression
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approaches are evaluated by compression ratio (or data rate), computational requirements, and
the image and analysis errors introduced due to lossy compression. The SPAM (Spectral
Analysis Manager) package was used to produce mineral maps from the original and
reconstructed data sets. These mineral maps were then analyzed for error.

II. Compression Based on Vector Quantization

Vector Quantization (VQ) is motivated by rate-distortion theory [2] which states that better
performance can be achieved by coding vectors rather than scalars. To effectively exploit spatial
and spectral correlations among image pixels in VQ, the image is partitioned into two
dimensional cells of fixed size in all spectral bands. The pixels in each k = wxw_of a
rectangular cell of each spectral band are scanned in raster scan order and are taken to be a one-
dimensional vector of size k in band sequential (BSQ) order. As the image is scanned, each
vector is compared to standard vectors in a codebook. The address of the standard vector in the
codebook that most closely matches the input vector is transmitted or stored as the code for that
cell. Compression is obtained because the address bits are much fewer than the number of bits
required for representing each vector, and because the number of elements transmitted or stored
is less than the original number of pixels by a factor equal to the vector size. Thus, the smaller
the codebook size (m), and the larger the vector size (k), the more efficient is the compression
(fewer bits are required per pixel).

This relationship of codebook size and vector size to compression efficiency is illustrated
by the expression for the number of bits required per pixel, or compression rate (r).

r = 1/k*logym bits/pixel (1)

A particular rate can be accomplished by several possible pairs of m and k. Selecting small
values of the codebook size, m, is not very effective because r changes as logarithm of m.
Increasing the vector size is more effective since the rate, r, increases linearly with 1/k. Thus,
the change in rate, r, is more rapid with k than m, suggesting that large vector dimensions should
be used.

In designing a VQ compressor, one must also consider the distortion introduced by the VQ
process. The most commonly used distortion measure is the mean squared error between input
image and reconstructed image. Although this measure does not directly show how close
visually the reconstructed image is to the original image, it is used because it is mathematically
tractable, and does give some sense of difference between the two images.

Here we use the average mean squared error as a distortion measure for quantifying the
performance of the encoder. If Xi, and ¥; are the input vector and reproduced vector
respectively, the average distortion, d, is given by

d=1/mn 2 (X;-%)? ()

where n is the number of vectors from the input image. For given rate, r (bits/pixel), and given
distortion measure, d, the vector dimension, k (pixels), and the codebook size, m, can be
optimally determined [3].

Another common distortion measure frequently used is the signal to noise ratio (or signal
to quantization noise ratio [4]), defined as:

SNR = 10 log;E(lIxlI2) /d A3
where E(lIxI2) is the average signal energy, and d is as given in Eq. 2.

As noted earlier, large vector dimensions should be used to achieve low compression rates.
Large vector dimensions, however, are difficult to handle even in parallel machines. For a given
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codebook size, the computational requirements are directly proportional to the vector dimension.
Since larger vector dimensions are also recommended to exploit the image spatial correlations
effectively, trade-offs must be made between computational requirements and compression
performance (rate and distortion).

The greatest drawback of VQ is that it is computationally very demanding. The bulk of the
time is consumed exhaustively searching the codebook to find the closest match to a given input
vector from among the code words in the candidate set. Different methods have been developed
to speed the search by structuring the codebook, at the cost of reducing the compression factor,
Parallelization is an obvious solution to this search problem in both codebook generatlon as well
as in data encoding.

The VQ can be conveniently described by assuming an array of cells configured in two-
dimensional lattice. This array holds the representative samples to the input set, also called the
codebook. The most important function of the VQ is to learn from the input samples the most
optimal codebook containing fewer number of samples than the input set. Let the input event
space be represented by

€ = {X7, Xses XjoresXy) Where X; = (Xiq, Xipseees Xig )
and the output space or codebook by

Y= (Yl’ Y2,. . Y_]’ ,Y } where Y_] = (yjl’ Yj2’-'~’ yjk)t
In all practical situations the codebook size, m << n (the number of vectors extracted from the
input image). The compression ratio is given by (n*b)/log,m, where b is number of bits per
vector.

In the training process y is learned from € such that the many to one mapping of all the
vectors X; € & onto Y;e vy results in minimum error. The learning starts from some initial
state, Y (0) After X; 15 compared with all samples in y, the most closely matching vector, Y, is
called the winner. The winner Y, is updated such that X; and Y match even more closely in
subsequent iterations. This is competmve learning. Usmg the Ecuchdean distance measure for
matching, the identification of the winner can be mathematically represented as:

X - Y Il = Min | X; - Y; I 4)
Vjem

Y, is the closest match to the input sample X; from mean squared error point of view.
Next, Y, is updated according to the foflowmg rule in order to make the match even closer
between successwc iterations, t and t+1:

Y{(t+1) = Y0 + o0(X; - Y©)  for j=c )
Yit+1) = Y] 0 for j#¢

where o(t) is a monotonically decreasing sequence of scalar values in t, making the error
minimization converge locally. When the updating rule of Eq. 5 is applied, the error minimizes
asymptotically. The input sample X; is selected randomly from the event set &.

A. VQ using LBG algorithm

The first of the two approaches to VQ explored here uses the well known Linde-Buzo-Gray
(LBG) algorithm, based on the k-means clustering algorithm, to train the codebook[4]. In this
approach, the vectors extracted from the input multispectral images are clustered into a finite
number of classes (equal to the size of the code book) in k-dimensional space, where k is the
dimension of the vector.
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In the LBG algorithm, the initial state, Y; € y for alli € (1..m), is selected randomly from
input sample set, &. Next, the competitive learning process is carried out by first accumulating
the subsets of training samples from & that map onto each location of the codebook, v, based on
Eq. 4. Then the updating operation is performed in a single step by using the mean of the
samples that mapped onto each of the codebook locations. The accumulating and updating steps
are then carried out iteratively until convergence [4].

The LBG algorithm maps input samples onto one of m different codebook vectors. The
mapping is done regardless of the index value, i, of the codebook vector, so that the m cells act
independently. Thus, the input vectors are mapped to the index i in haphazard order. The
impact of this in pattern recognition accuracy is debatable, but it certainly slows the
classification speed of incoming features, because of the exhaustive search required to determine
the matching pattern in the index range. This haphazard mapping is also contrary to the way in
which biological cells or neurons interact spatially to provide a topologically ordered map of
input features. Kohonen's work on Self Organizing Feature Maps (SOFM) achieves this
topological property of the neural systems by modifying the update rule in Eq. 5, as discussed in
the following section.

B. VQ using SOFM algorithm

In the SOFM training process, the values Y; € v, are initialized with random values. The
values Y; € \ are then treated as a two-dimensional neural lattice space (m = mxm,), and
updated not only at the location of the winner, Y, but also in a spatial neighborhood, N.. The
function, a(t) in Eq. § is replaced by hcj(t)e(t), w?xich not only decreases with time, but also
becomes more peaked spatially with tihe. The function h;(t) initially has a broad spatial spread,
which becomes more localized at the winner location, Y, In each ensuing iteration. Thus, the
cell values, which initially have random value, organize themselves to match the events of the
input space, while retaining the distance relations of the higher dimensional input space in two- -
dimensional lattice locations of the cells [S-7].

III. Massively Parallel Implementation of VQ

VQ image compression consists of a training phase, coding phase, and decoding phase. In
our case, the training phase consists of generating a codebook using either the LBG or SOFM
algorithm. The coding phase consists primarily of searching through the codebook for the best
match. The decoding phase consists of a straightforward table lookup from the codebook,
producing a reconstructed image.

The training phase is very computationally very intensive. For every sample presented, the
entire codebook must be searched to decide the winner. Then the codebook must be updated in
the winner's location and in the neighborhood of winner. With a naive codebook structure, the
algorithm makes an exhaustive search of the codebook as many times as the network is
presented with training samples.

On sequential machines, search times may be improved by organizing the entries in
efficient tree structures, such as pruned tree K-D tree structures. These tree structures reduce the
search from O(m) to O(log m), provided the tree is nearly balanced, where m is codebook size.
These speedups are obtained by effectively increasing codebook size, thus increasing storage
requirements, and decreasing the compression factor. However, on parallel machines, it is
straightforward to improve the search time without increasing the codebook size.

Being readily available in our facility, the MasPar model MP-1 was used as our
implementation platform. The MasPar MP-1 is a fine grained SIMD machine with 8§192 4-bit
processors organized in a 128 row by 64 column array. The codebook size was set to be less
than or equal to 128x64, so each entry of codebook maps on single processor, minimizing the
data movement among the processors. VQ compression using LBG and SOFM was
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implemented on the MasPar MP-1 using a C-like language called MPL (MasPar Language). In
MPL, "plural" variables are arrays equal in size to the processor array, which have a value in
each processor's local memory.

A. Training

1. Initializing the Codebook. The first steps in the training process are to select the
codebook and vector sizes, and to initialize the codebook. The codebook size, m, and vector
size, k, are normally selected based on the compression factor and distortion specifications for a
particular application. However, as we noted earlier, the change in compression rate, r, is more
rapid with k than m. Therefore, larger-sized codebooks provide improvement in signal to noise
ratio without appreciably affecting compression ratio (doubling the codebook size reduces the
compressor rate by only one bit/pixel). Further, in the MasPar implementation, the
computational requirement, T, is unaffected by codebook size as long as it is less than the PE
array size. However, when the codebook size is more than PE array size, the computational
requirements go up as follows:

T=T, fm/nproc] for m > nproc

where nproc is number of PE's in the array (size of PE array), and m is the size of codebook. T,
is computational requirement for m = nproc.

Considering the above, the best choice for codebook size in the MasPar implementation is
an integer multiple of the number of processors in the MasPar, nproc. Further adjustments in
compressor rate can be best achieved by varying the vector size, k.

For LBG, the codebook is initialized by randomly selected vectors from the input image.
The SOFM training algorithm uses random number generator for codebook initialization. For
this purpose, a plural floating point array of random numbers between 0 and 1.0 is generated on
MasPar in few machine cycles using an MPL built-in function called p_random.

2. Computing the winner for each sample. After the codebook is initialized, the input
image pixel values are normalized with respect to the maximum pixel value, and the image is
decomposed into a set of vectors at randomly chosen locations in the image. Each of these
vectors are broadcast in turn to all PE's in the array, and the Euclidean distance between the
input vector and codebook is computed at all locations. The location where the value is
minimum can be found by using the reduction operator which finds the minimum value of the
array.

3. Updating. For the LBG algorithm, the winner locations accumulate all the vectors
during the iteration. At the end of the iteration the contents of the winner is updated to be the
centroid of all the vectors. For SOFM, however, the updating is performed for every incoming
vector in the neighborhood, N, of the winner. ,

Each cycle of computing the winners and updating the codebook is called an epoch. the
codebook is updated until there is no appreciable change in the codebook from one epoch to the
next.h For most practical problems, for error less than 1%, these algorithms converge in 10-15
epoches.

B. Coding

After the training phase, the codebook is frozen and used for coding images of the class
whose subset was used for generating the codebook. The coding consists of exhaustive
searching through the codebook for every sample to be coded. Since the codebook is loaded into
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the PE array's local memory, the computational requirement for exhaustive search is proportional
to the size of the vector. Further, it is independent of the size of the codebook as long as the
codebook size is less than or equal to the size of the PE array. In sequential coding this search
would be proportional to the product of codebook size and vector size. Thus, the parallel version
could be faster than the sequential search by a factor as much as the size of the codebook. The
coding procedure is as follows.

Extract a vector of size k from the input image (in raster scan order),

Broadcast this vector into the local memory of all PE's,

Compute a distance measure (such as Euclidean distance) between the vector and the
codebook at each PE,

Find the minimum of the Euclidean distance, and

Store or transmit the address bits of the PE where minimum value of the Euclidean
measure is obtained.

Repeat 1-5 for until the entire image is scanned.

I S ol e

The coding procedure is basically the same as computing the winner in one epoch of the
training phase. The difference is in the order in which the vectors are extracted from the image.
In the coding phase, the data can be extracted in any convenient order. However, in the training
phase, the extraction order should be random to avoid introducing an order dependent bias into
the codebook.

C. Decoding

Decoding is reconstructing the image from the address bits of each vector. This is a table
lookup process in which the codebook vector for each address is substituted for the image data
values. This process is sequential and can be carried out on sequential machines more
efficiently than parallel machines.

1V. Evaluation Scheme

The data compression approaches are compared here in terms of distortion measures for a
given compression ratio, and in terms of an analysis application. The distortion measures
employed are Mean Square Error (Eq. 2) and SNR (Eq. 3). The compression ration (CR) is the
ratio of number of input bits to the number of output bits.

AVIRIS data sets are high spectral resolution images which are used for many applications
such as geological, vegetation, and atmospheric studies. The Spectral Analysis Manager
(SPAM) software package has been developed at Jet Propulsion Laboratory to analyze this and
other imaging spectrometry data. It enables the user to store the spectral characteristics of land
features obtained by field experiments and detect the pixels having similar characteristics in the
image.

A. Spectral signature matching

SPAM's high speed spectral matching algorithm, find, employs binary encoding of the
spectral characteristics of pixels or minerals (in mineral analysis application) to matching them
to stored patterns [8]. Given a prototype spectrum, SPAM binary encodes each pixel in an image
and decides whether or not the pixel belongs to a stored prototype class by comparing their
amplitude and slope Hamming distances to user specified thresholds.
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B. Mixture Component Analysis

The spectrum of an image pixel represents the total energy reflected by the atmosphere
and earth's surface within the gathering instruments field of view. Ignoring the atmospheric
effects, the pixel energy can be considered to be a weighted combination of the energy reflected
by several surface components and is expressed as follows:

S=2 C. DS, +A ' (6)
k

where Cy. is a nonnegative constant proportional to the fractional surface composition for kth
mineral, D is a diagonal matrix whose entries are the product of the solar illumination and
atmospheric transmissivity for each of the k minerals, S is the spectrum of the k'h mineral, and
A is a constant vector. Given the values of the S and S, Cy can be estimated by a constrained
least squares technique.

V. EXPERIMENTAL RESULTS

The original data set used this study consists of a data cube of 128 rows by 256 columns by
32 spectral bands from the April 13, 1989 Rogers Dry Lake data set. The 32 spectral bands
correspond to band 172 (wavelength = 1.9343) thru 203 (wavelength = 2.2416) in the AVIRIS
data format. The first six bands of the image data set is shown in Fig. 1(a). The input data cube
was divided into 4 full image size parts, but with only 8 contiguous spectral bands. Separate
codebooks were generated for each of these four subdata cubes. To exploit both spatial and
spectral correlations, a 32 element vector was used for Vector Quantization, made up of a 2 by
2 spatial component and an 8 band spectral component.

Codebooks were generated using both LBG and SOFM algorithms on the MasPar, and the
original data set was coded and further compressed with lossless coding. The compression
results are shown in the Table I.

The compressed and reconstructed results and the error images from these techniques are
shown in Fig. 1 (a-e). LBG technique performed better than SOFM in terms of mean squared
distortion. This is also evident in Fig.'s 1(c) and 1(¢). The coding time was about 30 seconds for
the data size of 128x256x32. This corresponds roughly to a 0.3 megabit/second rate. Efforts are
under way to improve the coding speed to 1 megabit/second.

A. Spectral signature matching

The test samples taken from the image data have spectral characteristics similar to some
minerals stored in the library of SPAM. These minerals are sphalerite, colemanite, and brucite.
We are not claiming that these minerals are present in this data set. However, if these minerals
are detected in the compressed data similarly to how they were detected in the original data, then
we infer that the compressed data worked for this application as well as original data. The
results of the spectral matching are given in the Table II.

The spatial locations where these minerals are detected roughly are same. Sphalarite
locations in the three images are shown in Fig. 2 (a-c) with yellow spots. It is very interesting to
see that in all three mineral detections SOFM performs better than LBG algorithm in this
application implying that MSE is not the appropriate evaluation criterion for this application.
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B. Mixture Component Analysis

In this experiment a spectral plot at location pixel, line (26,17) is broken up into fractions
of above three mineral spectral characteristics. The results are given in the Table III. The results
of this analysis from SPAM are shown in Fig. 3 (a-c). From this, one can see that both LBG and
SOFM algorithms have same composition at the above pixel location and they each differ very
little from the original data.

VI. Conclusions

We have shown that hyperspectral data from instruments like AVIRIS can be compressed
for archival and distribution over the computer network. In this work we have used two
algorithms of vector quantization and obtained compression ratio of over 20 with minimal
effects on the analysis of the data. This has been shown by objective evaluation of data applying
the compressed as well original data to mineral studies in geology.
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Table II. Comparison of reconstructed data
Table I. Comparison of LBG and SOFM from LBG and SOFM with original data in
coding performance. the detection of minerals,
Method CR__MSE  SNR (db) Error Original LBG SOFM
LBGdata 22.12 3.13 31.06 Minerals threshol
SOFM data 2243 6.39 34.14 Sphaleritef 0 3636 3975 3666
------------------------------------------------------ Colemanitem 1 3678 4013 3763
Brucite.c 1 106 70 112

hal lemani i
Original 0.1718 0.0000 0.9428
LBG 0.1788 0.0000 0.9450
SOFM 0.1714 0.0000 0.9443
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Figure 1. (a) Bands 172-177 of Rogers Dry Lake data, (b) reconstructed image from LBG
coding, (c) error image between a and b, (d) reconstructed image from SOFM coding, and (¢)
error image between a and d.
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Figure 2. Location of samples (yellow) that matched sphalerite with O threshold. (a) Location of
matched 3636 samples in original data, (b) location of 3976 matched samples in LBG
reconstructed data, and (c) location of 3666 samples matched in SOFM reconstructed data.
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Figure 3. Mineral composition of sample at line 17 and column 26 using least square fitting.
Mineral composition (a) for original data, (b) for LBG reconstructed data, and (c) for SOFM
reconstructed data.



