
SPECTRAL UNMIXING OF VEGETATION, SOIL AND DRY CARBON IN ARID REGIONS: 
COMPARING MULTISPECTRAL AND HYPERSPECTRAL OBSERVATIONS 

 
Gregory P. Asner1 and Kathleen B. Heidebrecht1 

 
 
1. Introduction 
 

Remote sensing of vegetation cover and condition is critically needed to understand the impacts of land use 
and climate variability in arid and semi-arid regions.  However, remote sensing of vegetation change in these 
environments is difficult for several reasons.  First, individual plant canopies are typically small and do not reach the 
spatial scale of typical Landsat-like satellite image pixels.  Second, the phenological status and subsequent dry 
carbon (or non-photosynthetic) fraction of plant canopies varies dramatically in both space and time throughout arid 
and semi-arid regions.  Detection of only the “green” part of the vegetation using a metric such as the normalized 
difference vegetation index (NDVI) thus yields limited information on the presence and condition of plants in these 
ecosystems.  Monitoring of both photosynthetic vegetation (PV) and non-photosynthetic vegetation (NPV) is needed 
to understand a range of ecosystem characteristics including vegetation presence, cover and abundance, 
physiological and biogeochemical functioning, drought severity, fire fuel load, disturbance events and recovery from 
disturbance. 

 
Many approaches have been devised to analyze PV, NPV and bare soil cover in arid and semi-arid regions.  

A wide variety of studies have attempted to correlate vegetation indices (e.g., NDVI) to the fractional coverage of 
PV and bare soil (e.g., Duncan et al. 1993, Carlson and Ripley 1997).  The typical spectral regions used to detect PV 
– the visible and near-infrared wavelengths (0.4-1.3 um) – do not easily separate the individual contribution of NPV 
and bare soil to the measurement (van Leeuwen and Huete 1996, Asner 1998, Roberts et al. 1998, Asner et al. 
2000).  More recently, spectral mixture analysis (SMA) was developed to decompose image pixels into constituent 
PV, NPV and bare soil covers.  Many SMA efforts have now been applied in arid and semi-arid ecosystems using 
airborne and spaceborne sensors (e.g., Smith et al. 1990, Sohn and McCoy 1997, Wessman et al. 1997, Elmore et al. 
2000).  Most SMA approaches assume that image pixels contain endmember cover fractions that are linearly 
summed: 

 
ρ(λ)pixel  =  Σ [Ce • ρ(λ)e]  =  [Cpv • ρ(λ)pv + Csoil • ρ(λ)soil + Cnpv • ρ(λ)npv]  (1) 

 
where ρ(λ)e is the reflectance of each land-cover endmember (e) at wavelength λ.  The sub-pixel cover fraction (Ce) 
of each land-cover endmember may be PV, NPV, bare soil or other constituents.  Solving for the sub-pixel cover 
fractions (Ce) therefore requires that the observations (in this case, reflectance or ρ(λ)pixel) contain enough 
information to solve a set of linear equations, each of the form of equation (1) but at a different wavelength (λ).   

 
The selection of reflectance endmembers (ρ(λ)e) for equation (1) is also critical to the accurate estimation of 

the sub-pixel cover fractions (Ce).  These endmembers are usually selected either from the image data (e.g., 
Wessman et al. 1997) or from spectral libraries built from field surveys (e.g., Roberts et al. 1998).  Each approach 
has distinct advantages and disadvantages.  Image-based endmembers are ideal because they are drawn from the 
population of data points to be analyzed, which increases the likelihood that image pixels will be decomposed using 
endmembers that actually exist in the area.  However, selection of image endmembers often requires the availability 
of pixels comprised purely of each dominant cover type.  Pure image pixels are rarely available in images of 
ecosystems, especially in arid and semi-arid regions.  A very unique method for addressing this issue has been 
developed by Bateson and Curtiss (1996) and Bateson et al. (2000).  Nonetheless, no automated, fully objective 
methods have been developed for dealing with sub-pixel heterogeneity in image endmember selection. 

 
The alternative approach of spectral endmember libraries has its advantages and problems as well.  The 

major advantages are that endmembers can be readily collected from large field-based surveys and that the quality 
and interpretation of the endmembers are easy to control.  The potential problems in using spectral libraries relate to 
endmember generality and scalability.  Spectral endmembers collected in one area may not be applicable to another 
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area, depending on the spatial and temporal variability of vegetation, soils, rocks and other features.  Equally 
important, vegetation spectral properties collected at the leaf or branch level, or very close to the top of a plant 
canopy, usually do not well represent the spectral properties of the entire plant canopy, which includes all of the 
tissues, their architectural orientation, and within-crown gaps (Asner 1998, Asner in press).   

 
Of the many spectral mixture modeling methods presented in the literature, all have either used multi-

spectral or hyperspectral observations to decompose image pixels into constituent endmember cover fractions (Ce of 
eq. 1).  To our knowledge, no studies have objectively compared the capabilities of multi-spectral and hyperspectral 
observations with spectral mixture analysis to estimate PV, NPV and bare soil extent in arid and semi-arid 
ecosystems.  To do so requires: (1) that the generality and scalability of the endmember spectra are controlled for in 
the experiment; (2) that the spectral resolution of the endmember spectra and image data are adjusted between multi-
spectral and hyperspectral cases in a consistent manner; and (3) that the spectral mixture model is general, fully 
automatic and thus resistant to subjective decision-making, such as in the determination of spectral endmembers. 

 
In this paper, we present a study that quantitatively compares the ability of various multi-spectral and 

hyperspectral observations to decompose remotely sensed optical data into sub-pixel photosynthetic vegetation 
(PV), non-photosynthetic vegetation (NPV) and bare soil covers.  We employed five different spectroscopic 
sampling schemes available from the NASA Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) as well as 
with these data convolved to Landsat Thematic Mapper (TM), Terra Moderate Resolution Imaging Spectrometer 
(MODIS), and Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) optical 
channels.  The analysis using the six optical Landsat TM channels was selected to represent one of the most 
commonly available satellite data sets for land-cover monitoring.  The ASTER analysis was selected because of its 
relatively dense 5-channel sampling of the shortwave-IR2 (SWIR2) region between 2.1 and 2.4 µm.  We tested 
MODIS because it is available on a daily basis, and it provides a 15-channel sampling of the visible and NIR 
spectral regions. 
 
2. Study Region 
 

The study area was located in the 
northeast Chihuahuan Desert, New Mexico, USA 
at the U.S. Department of Agriculture (USDA) 
Jornada Experimental Range (Figure 1).  Mean 
annual precipitation is 210 mm yr-1, and mean 
annual temperature is 16oC (min: -7oC, max: 
38oC).  The area is also a U.S. National Science 
Foundation (NSF) Long-term Ecological 
Research (LTER) site, and has been the focus of 
many hydrologic and ecological studies 
associated with land use in arid ecosystems 
(Schlesinger and Pilmanis 1998).  Long-term 
grazing and fire suppression have been factors in 
the observed conversion of desert grasslands to 
shrublands (Buffington and Herbel 1965, 
Schlesinger et al. 1990).  Some areas remain 
dominated by Boutelua eriopoda (black grama) 
grasslands, while other areas have been 
transformed into Prosopis glandulosa (mesquite) 
shrublands.  The grasslands are also sparsely 
populated by Prosopis shrubs and occasional 
yucca plants (Yucca elata).  The shrublands are 
comprised of a two-phase landscape containing 
dune-like mesquite clusters imbedded in a bare 
soil surface. 
 
 
 

Mesquite

Grassland

Mesquite

Grassland

Figure 1.  AVIRIS (Red: 0.80 µm, Green: 0.68 µm, Blue: 0.54 
µm) showing the Jornada Experimental Range and locations of 
field sites.  Photographs of the shrubland and grassland sites 
illustrate the differences in photosynthetic vegetation (PV), 
non-photosynthetic vegetation (NPV), and bare soil covers in 
each study area. 
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3. Site Selection and Field Sampling 
 

For this study, the biophysical and geochemical requirements of an experimental grassland and shrubland 
site included: (1) low species diversity, (2) strong differences in PV cover between sites, (3) pronounced differences 
in NPV between sites, and (4) nearly constant soil type.  These requirements were used to maximize differences in 
the physical setting between two arid ecosystem sites while minimizing biogeophysical variability within each site.  
We also selected sites that had few cryptobiotic soil crusts, which can play an important role in determining the 
“green” reflectance properties of arid ecosystems (Karnieli et al. 1999) and thus confuse our study.  Using these 
requirements, we selected one shrubland and one grassland area, each of 8 ha (200 m x 400 m) in size (Figure 1).  A 
300 m transect was established in each area running directly north-south (azimuth = 0); geo-location of each transect 
was achieved using differentially-corrected global position system (GPS) measurements.  The following field 
measurements were made at the two sites in June 2000, coincident with an airborne imaging spectroscopy 
acquisition using the NASA AVIRIS sensor: (1) species presence-absence, (2) PV, NPV and bare soil cover 
fraction, and (3) spectroscopy of PV, NPV and bare soil covers. 

 
The vascular plant composition of each site was determined using a presence-absence tabulation of species 

every 5 m along the 300 m transect.  At the grassland site, the fractional cover of PV and NPV was determined using 
a visible/near-infrared digital camera (Agricultural Digital Camera - ADC; Dycam, Inc.).  The camera was mounted 
3 m above the ground in the downward nadir-viewing position from a portable boom, yielding an image field-of-
view of 1.5 m x 2.5 m.  The camera uses visible and near-infrared filters to isolate the fractional cover of PV and 
bare soil as described by White et al. (2000).  Here, we imaged the grassland canopy every 10 m along the centerline 
of the 300 m transect. 

 
Vegetation cover fraction at the shrubland site could not be adequately determined using the ADC camera 

because the shrub clusters (~ 5-15 m dia.) are much larger than the field-of-view of the ADC camera (~ 1.5 x 2.5 m).  
Therefore, we acquired a pan-chromatic IKONOS image with spatial resolution of 1m on July 2, 2000, which was 
within two weeks of the field sampling and AVIRIS data acquisitions.  This imagery was co-located with the 
AVIRIS data to facilitate comparisons of PV cover along the 300 m transect.  Because NPV cover was near zero in 
the shrubland area, the IKONOS data isolate PV from the soil background. 
  

Canopy and soil spectroscopic measurements were collected using a field spectroradiometer (Fieldspec FR-
Pro, Analytical Spectral Devices, Inc.) along each transect in the shrubland and grassland sites and at eight other 
shrubland and grassland locations throughout the area.  The spectroradiometer collects upwelling radiance 
measurements in the 0.4-2.5 µm wavelength range; the sampling interval is 1.4 µm in the visible and near-IR (0.4-
1.0 µm) and 2.0 µm in the shortwave-IR (1.0-2.5 µm).  The spectral radiance measurements were collected at 5 m 
intervals along the 300 m transects and were converted to reflectance using a calibration panel (Spectralon, 
Labsphere, Inc.).  All plant canopies within 5 m radius of the sampling point were measured.  At the time of the field 
survey, the grassland canopies were nearly fully senescent and the shrubland canopies were fully green, allowing us 
to separate the spectra both by species and by PV-NPV category.  In addition, the spectral reflectance properties of 
bare soil patches were measured at each sampling location along each transect. 
 
4. Airborne Imaging Spectroscopy 
 

AVIRIS imaging spectroscopy data were collected over the field sites on June 10, 2000, coincident with the 
field measurement campaign.  The AVIRIS sensor was flown on a NASA ER-2 aircraft at an altitude of 20 km, 
which resulted in image pixels of 19 m x 19 m.  The flightlines were oriented in the north-south direction (azimuth = 
0o).  The imagery was geo-located using roads matched to GPS points in a geographic information system (GIS).  
The GIS data were provided by the USDA and Jornada LTER staff (courtesy of B. Nolen); the geo-location 
accuracy of the roads was less than 1 m.  The AVIRIS data were converted from radiance to apparent surface 
reflectance using the ATREM atmospheric calibration code (Gao et al. 1993) and further refined using a field 
spectral measurement of a bare soil area. 
 
5. Spectral Mixture Analysis 
 

We developed a general, probabilistic model for decomposing optical reflectance measurements into sub-
pixel estimates of PV, NPV and bare soil covers.  This model is fully automated and uses a Monte Carlo approach to 
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derive uncertainty estimates of the sub-pixel cover fraction values (Figure 2).  The model, AutoMCU, is based on a 
code first developed only for the shortwave-IR spectral region (AutoSWIR; Asner and Lobell 2000), but it is more 
general in that any combination of optical wavelengths can be used in the unmixing process.  AutoMCU uses three 
spectral endmember “bundles”, derived from field measurements, to decompose each image pixel using equation 
(1). 

 
We used the 

spectra collected in 
the grassland and 
shrubland field sites 
to execute the 
unmixing code.  Our 
intent was to 
minimize errors and 
uncertainty that can 
arise when unmixing 
image pixels with 
spectral endmembers 
not present in the 
specific study area.  
This strategy was 
critical to comparing 
the accuracy of sub-
pixel cover fraction 
estimates from 
different 
combinations of 
spectral channels and 
signature types. 
  

After the three spe
sampled to AVIRIS, Lands
functions.  The AVIRIS im
instruments.  This provided
AutoMCU code.  The only 
we tested the accuracy of sp
only the shortwave-infrared
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igure 2.  Schematic of Monte Carlo spectral unmixing model, AutoMCU, showing that any 
pectral measurement (in any number of wavelength channels) forms an observation vector.  This 
bservation vector is decomposed using eq. 1 (text) with spectral endmember bundles of 
hotosynthetic vegetation (PV), non-photosynthetic vegetation (NPV), and bare soil.  The 
nmixing algorithm is iteratively run using endmembers randomly selected from these sets (n = 
0).  The algorithm produces sub-pixel cover fraction values with uncertainty estimates that arise 
rom variability in the endmember bundles. 
ctral endmember bundles (PV, NPV, soil) were collected from the field, they were sub-
at TM, ASTER, and MODIS wavelength channels using published spectral response 
agery was also convolved to the wavelength channels provided by the four satellite 
 a means to spectrally unmix the same ecological area using the same field spectra and 
difference between each spectral unmixing was the wavelength sampling.  In addition, 
ectrally decomposing image pixels using only the visible and near-IR (0.4-1.3 µm) and 
 (SWIR: 1.3-2.5 µm) hyperspectral measurements from AVIRIS. 

.3 µm) spectral unmixing algorithm of Asner and Lobell (2000) was also tested against 
 schemes.  This algorithm uses SWIR2 spectra that are “tied” at 2.03 µm to isolate the 
 bare soil spectra, which are very distinct in this wavelength region.  Based on both field 
s (Asner 1998, Asner et al. 2000), tied-SWIR2 spectra of PV and NPV should be less 
anopy biomass, architecture and leaf biochemistry.  Tied-SWIR2 spectral bundles of bare 
n in geochemical properties that cause the distinctive 2.2 µm soil hydroxyl (OH-) 
n width, shape, and depth (Ben-dor et al. 1999).  Therefore by developing bundles of 
or use in the Monte Carlo unmixing model, in situ variations in biochemical and 
propagated to the sub-pixel cover fraction estimates. 

 divided the spectral reflectance values within a given wavelength region by the 
t wavelength.  This is analogous to tying at 2.03 µm, but dividing is often used to 
bsorption features of various materials (Clark 1999).  We therefore also test the spectral 
ded SWIR2 data.  In addition, the SWIR2 data in five ASTER channels provide a means 
viding approaches using an available multi-spectral satellite instrument.  This 
rtinent here since the ASTER and AVIRIS instruments have similar spatial resolutions of 
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15-30m and ~20m, respectively.  All of the spectral wavelength sampling and signature permutations compared in 
this study are presented in 
Table 1. 
 
6. Results and Discussion 
 

Species Composition 
 

The vascular plant 
presence-absence survey 
yielded the following 
information verifying that the 
first criterion for site 
selection (low plant 
diversity) was successfully 
met.  At the shrubland site, 
98.9% of the species present 
was Prosopis glandulosa, 
and 1.1% was comprised of 
small, fully senescent 
herbaceous grasses and forbs 
(species undetermined).  At 
the grassland site, the species 
present were Boutelua 
eriopoda and other 
graminoids (99.3% of the 
time), Prosopis (4.7%), and 
Yucca spp. (3.3%). 
igure 3.  Photosynthetic vegetation (PV) and non-photosynthetic vegetation (NPV) 
over along a 300 m transect cutting through the 8 ha grassland study site.  PV and 
PV fractions were calculated using the method described in detail by White et al. 

2000). 
 
PV, NPV and Bare Soil Cover 

 
At the grassland site, the ADC camera results 

yielded a mean PV cover of 6.9% (std. dev. = 3.3%), 
with a range of 1% to 18% (Figure 3).  Bare soil fraction 
estimates yielded mean (s.d.) values of 58.6 (17.3) %, 
with a range of 20% to 80%.  Asner et al. (2000) had 
estimated PV fractional cover of 4-11% along a 
neighboring grassland transect in May 1997.  Those 
values were determined independently from our values 
reported here, by measuring total vegetation cover and 
multiplying it by the NPV:PV ratio of 1m sub-plots in 
the area. 

 
At the shrubland site, the high spatial 

resolution IKONOS imagery indicated a PV and bare 
soil cover fraction of 18% and 82%, respectively, 
throughout the 8 ha area surrounding our 300m transect 
(Figure 4).  This concurs with recent laser altimetry data 
that yielded PV and bare soil cover estimates of 19% 
and 81%, respectively (Rango et al. 2000).  These 
estimates also agree with those reported by Schlesinger 
et al. (1996) and Asner et al. (2000). 
  

NPV was extremely low (< 2%) at the 
shrubland site as is evident in our field transect of plant 
igure 4.  IKONOS image of a 50 ha mesquite (Prosopis 
landulosa) shrubland area.  Large shrub-dunes are visible 
hroughout this region.  The rectangular box indicates extent 
f 200 x 400 m (8 ha) study area, showing the 
hotosynthetic vegetation (PV) cover of 18%.  The square 
ox shows the extent and overlap of the 200 x 200 m study 
rea from Rango et al. (2000), which indicated a PV cover 
f 19%. 
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presence-absence as well as in our visual surveys of the area (Figure 1).  NPV was extremely high at the grassland 
site (mean = 36.7%, s.d. = 13.3%), with values ranging from 10-70% along the 300m transect. These estimates 
concur with recent studies conducted in the same or similar areas (Schlesinger et al. 1996, Asner et al. 2000). 
 

Field Spectroscopy 
 
 Field spectral data collections yielded 
distinct spectral endmember bundles for PV, NPV 
and bare soil (Figure 5).  The PV spectra from 
shrubland and grassland sites were not statistically 
different (t-tests by wavelength), and thus they 
were combined into a single PV endmember set for 
all subsequent spectral mixture analyses (Figure 
5a).  The PV spectra showed typical value ranges 
for the visible, NIR, and SWIR wavelength regions 
as found in many arid ecosystems (Asner 1998).  
The greatest spectral variation occurred in the NIR 
(0.7-1.3 µm) and was the lowest in the SWIR2 
region from 2.1-2.4 µm.  The strong NIR spectral 
variation is indicative of highly varying leaf area 
index (LAI) at the scale of individual plant 
canopies (Asner et al. 2000).  While the SWIR2 
region did show some variability in the magnitude 
of reflectance, the spectral shapes were highly 
consistent (Figure 5d). 
  

The NPV spectra were collected only 
from the grassland site, as very little NPV was 
present or exposed at the shrubland site.  These 
NPV spectra were used in all mixture modeling 
analyses of both sites.  Consistent with previous 
studies, the NPV spectra showed almost constant 
monotonic-increasing reflectance in the visible-
NIR region (Figure 5b).  Several dry carbon 
spectral absorption features in the SWIR2 region 
are clearly apparent.  The features near 2.1 and 2.4 
µm are associated with the presence of cellulose, 
starch and oils (Curran 1989).  While the 
magnitude of reflectance varied strongly in the 
SWIR2 region, the shapes of the spectra were 
highly consistent (Figure 5e). 
 

The soil spectra were similar between sites (t-te
endmember set for spectral mixture analyses.  The well-
(Figure 5c), as are the visible wavelength features assoc
the shapes of the soil spectra in the SWIR2 region were 
consistent (Figure 5f). 

 
AVIRIS and AVIR

 
 The AVIRIS spectra from the shrubland and gr
between sites can be seen in the AVIRIS spectroscopy t
µm) and the SWIR2 (2.0-2.4 µm) wavelength regions.  T
statistically similar at nearly all wavelengths (t-tests by w
the spectra in the visible, NIR and SWIR1 regions to be 
continuum in the SWIR2 region were unique between th
 
Figure 5.  Field spectra from shrubland and grassland sites 
throughout the area: (A) photosynthetic vegetation (PV), (B) non-
photosynthetic vegetation (NPV), (C) bare soil.  The spectral 
shapes in the shortwave-IR2 region (2.0-2.3 µm) are shown in 
panels D-F to highlight the distinctiveness and relative 
consistency of endmembers when “tied” at 2.03 µm. 
sts by wavelength), thus they were combined into a single 
described OH- absorption feature near 2.2 µm is apparent 
iated with the presence of iron (Ben-dor et al. 1999).  Again, 
distinct from PV and NPV, and they were relatively 

IS-Convolved Spectra 

assland sites are shown in Figure 6a-b.  Subtle differences 
hroughout the visible-NIR transition, the SWIR1 (1.5-1.8 

he magnitudes of reflectance values from each site were 
avelength).  Visual inspections also showed the shapes of 

very similar.  However, the shapes of the reflectance 
e shrubland and grassland sites (Figure 6c-d).  Tied-SWIR2 
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spectra visually indicate that the shrubland 
site contained high bare soil cover due to 
well-defined 2.2 µm OH- absorption features 
(Figure 6c).  The grassland site displayed 
weaker OH- features in the tied-SWIR2 
spectra (Figure 6d).  Tied SWIR2 spectra in 
the 2.02-2.12 µm region from the grassland 
site indicated the presence of significantly 
more NPV than in the shrubland site.  The 
convex shapes of the tied-SWIR2 data from 
the grassland site were distinct from the 
concave shapes of the data from the 
shrubland site. 
  

The Landsat TM-convolved data 
showed little difference between the 
shrubland and grassland sites (Figure 7a), 
with only a slight difference in albedo in the 
NIR and SWIR wavelengths.  The MODIS 
data provided an increased sampling of the 
visible and NIR spectral regions (Figure 7b), 
yet the two field sites were spectrally 
indistinguishable using these channels.  This 
was the case for the visible-NIR channels in 
the AVIRIS data as well (Figure 6a-b).  
Previous studies have shown that bare soil and NPV
(Huete 1988, van Leeuwen and Huete 1996, Asner
igure 6.  AVIRIS spectra from the (A) shrubland and (B) grassland 
ites.  The 2.03-µm tied spectral shapes in the shortwave-IR2 region 
2.0-2.3 µm) are shown in panels C-D. 
 cannot be easily separated in visible-NIR wavelength channels 
 et al. 2000).  The ASTER data provided a unique multi-spectral 
igure 7.  AVIRIS data of shrubland (upper panels) and grassland (lower panels) study areas convolved to satellite sensor 
hannels: (A) Landat TM, (B) MODIS, (C) ASTER, (D) Landsat TM, (E) MODIS, (F) ASTER. 
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sampling of the SWIR2 (Figure 7c), indicating some differences between sites.  The tied-SWIR2 ASTER data are 
provided in Figure 8, showing the distinctive OH- absorption feature at 2.2 µm for the shrubland site, and less so for 
the grassland area.  ASTER’s sampling of the SWIR2 region does not resolve the 2.0-2.12 µm wavelengths that are 
needed for detection of NPV (Figure 5). 
 

Monte Carlo Spectral Mixture Analyses 
 
 The Monte Carlo spectral unmixing provided two pieces of 
information important to this study: (1) the accuracy of PV, NPV, 
and bare soil estimates and (2) the uncertainty or precision of these 
estimates.  Table 2 shows the spectral decomposition results for the 
shrubland and grassland sites using the ten different wavelength 
permutations.  The summary of field and IKONOS results are also 
shown under “Field Measurements” in Table 2. 
  

The full-range AVIRIS unmixing resulted in negative PV 
fractions, and the bare soil fractions were consistently over-
estimated by about 20% (Table 2).  However, the estimated NPV 
fractions were very close to the field NPV values, and within the 
statistical uncertainty of the two methods (ANOVA, p < 0.05).  The 
data show that full spectral range (0.4-2.4 µm) analyses may provide 
some measure of NPV presence, but they grossly under-estimate PV 
and over-estimate bare soil extent.  These results concur with other 
studies in arid regions, where very low green vegetation cover and 
very bright soils often preclude an accurate unmixing of image 
pixels using full-range AVIRIS data (van Leeuwen et al. 1997, Okin 
and Roberts 2000).  The PV fractions from Monte Carlo unmixing 

were also far under-
estimated at both field sites 
when using only the visible-
NIR (VNIR) spectral region 
(0.4-1.3 µm) of the AVIRIS 
data (Table 2).  This is also 
likely due to the presence of 
very bright soil, which 
saturates this wavelength 
region and leads to over-estimates
significantly over-estimated using
from the known confusion when s
region (van Leeuwen and Huete 1
2000). 

 
Spectral unmixing using 

region of the AVIRIS data yielded
comparable to the VNIR unmixing
SWIR2 spectra are dominated by e
5b-c).  Like the VNIR, this can lea
cover in these environments. 
  

Spectral unmixing with th
imagery yielded accurate estimate
The field-measured PV, NPV and 
were well within the statistical unc
While the PV fraction was slightly
statistically significant; ANOVA, 
fractions were estimated with high

8

igure 8.  Tied (normalized to 2.16 µm) 
pectra in the five ASTER shortwave-IR2 
hannels for the (A) shrubland and (B) 
rassland sites. 
 of soil cover.  The NPV fraction was also 
 the VNIR-only AVIRIS data.  This results 
eparating NPV and soils using this spectral 
996, van Leeuwen et al. 1997, Asner et al. 

the un-normalized SWIR2 (2.0-2.3 µm) 
 similarly poor results that were 
 (Table 2).  In arid and semi-arid regions, 
xtremely bright soils and NPV (Figure 
d to a substantial under-estimate of PV 

e “tied” SWIR2 region of the AVIRIS 
s of all three land surface covers (Table 2).  
bare soil fractions in the shrubland site 
ertainty range of the AutoMCU results.  
 over-estimated at the grassland site (not 
p = 0.09), both the NPV and bare soil 
 accuracy.  These results corroborate the 
 

igure 9.  Field spectra normalized 
y dividing the reflectance value at 
ach wavelength by the value at 
.03 µm for photosynthetic 
egetation or PV (panel A), non-
hotosynthetic vegetation or NPV 
panel B), and bare soil (panel C). 



work presented by Asner and Lobell (2000), and indicate that the tied-SWIR2 spectra are a means for estimating the 
three dominant surface constituents in two dramatically different arid ecosystems. 

 
It is common practice in the spectroscopy community to analyze specific absorption features via spectral 

normalization by division (Clark 1999).  Spectral unmixing with divided-SWIR2 spectra resulted in moderate over-
estimates of bare soil extent and major under-estimates of PV (Table 2).  The reason for this can be seen in the 
divided-SWIR2 spectra (Figure 9): normalization by division accentuated the shape of the endmembers relative to 
the tied-SWIR2 values (Figure 5 d-f).  This led to under-estimates of PV and over-estimates of bare soil as the 
unmixing algorithm attempted to compensate for overly accentuated PV endmembers (Table 2).  Moreover, it is 
mathematically inappropriate to use division-normalized spectra for linear mixture modeling.  The diagnostic 
spectral shapes of each land cover type are exploited by using tied spectra, which remove differences in overall 
albedo while preserving the linear relation in equation (1).  For example, subtracting the reflectance at one 
wavelength (ρ0) is valid because a spectrum can still be expressed as the properly weighted sum of endmembers: 
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However, a nonlinear spectral transformation, such as dividing by ρ0, cannot be done within the SMA framework: 
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This analysis shows, both mathematically and experimentally, that the use of division-normalized spectra is not 
appropriate for linear spectral mixture analysis. 

 
The ASTER sensor holds some promise for extending the tied-SWIR2 AVIRIS capability to the multi-

spectral spaceborne level, but our results indicated less than ideal estimates of the three cover fractions.  The tied-
SWIR2 ASTER unmixing did estimate bare soil and PV to within 10% of the field-measured values at the shrubland 
site (Table 2).  However, the NPV fraction was substantially under-estimated at this site.  Estimates of bare soil were 
similarly accurate at the grassland site, while the retrieved PV values were 4-5 times too high and the NPV values 
were 50% too low.  These results can be explained by comparing tied-SWIR2 spectra in AVIRIS (Figure 6c-d) and 
ASTER (Figure 8a-b) wavelengths.  The dense spectral sampling of the 2.0-2.15 µm region by AVIRIS allows for 
the NPV to be better separated from the bare soil.  ASTER’s spectral sampling does not begin until 2.16 µm, and 
thus it does not easily resolve the presence of NPV (only soil via the OH- absorption feature). 

 
Of all wavelength permutations attempted in the Monte Carlo spectral mixture analysis, only the tied-

SWIR2 data in AVIRIS channels 2.03-2.30 µm yielded accurate results with low statistical uncertainty (Table 2).  
The tied-SWIR2 ASTER results showed some promise for estimating bare soil cover; however, additional analysis 
at more sites is needed to verify the value of ASTER’s SWIR2 sampling for this purpose.  Based on these findings, 
the AVIRIS tied-SWIR2 unmixing was extended over the entire Jornada Experimental Range (Figure 10).  The 
shrubland site is located near the western edge of the larger shrubland region, which occupies the upper third of the 
image.  This region has PV cover values ranging from 0-30% and very low NPV cover values of 0-10%.  It has very 
high bare soil cover of greater than 70%.  The grassland site is located within a larger black grama grassland in the 
lower third of these images.  This region has very high NPV (>30%), low to moderate PV (0-15%), and relatively 
low bare soil cover (<60%).  The analysis will be extended in future efforts to understand the full variability of 
vegetation and bare soil extent and its linkages to biogeochemical processes at the regional scale.  For now, this 
study, combined with the study presented by Asner and Lobell (2000), indicates that the tied-SWIR2 spectral 
mixture analyses using high quality AVIRIS spectroscopic data can be used to estimate the relative and absolute 
fractional coverages of photosynthetic vegetation, non-photosynthetic vegetation (dry carbon), and bare soil in this 
arid region. 
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7. Conclusions 
 
 This study considered the accuracy and precision of linear spectral mixture analysis for estimating sub-
pixel coverage of photosynthetic vegetation (PV), non-photosynthetic vegetatation (NPV), and bare soils in arid 
regions.  The study employed two contrasting arid ecosystems and directly compared a wide variety of spectral 
sampling schemes in a controlled spectral unmixing or decomposition experiment.  This experiment utilized a dense 
sampling of field spectroscopic endmembers for PV, NPV and bare soil along with a general, probabilistic linear 
mixture model based on Monte Carlo analysis.  Concomitant imaging spectroscopy measurements from the NASA 
AVIRIS sensor provided a means to test five hyperspectral sampling schemes.  The field spectral endmembers and 
AVIRIS data were also convolved to the optical wavelength channels provided by Landsat TM, MODIS and 
ASTER. 
0.0                             0.3

PV Fraction NPV Fraction Soil Fraction

PV Fraction S.D. NPV Fraction S.D. Soil Fraction S.D.

0.0                            0.4

0.00                            0.040.00                            0.050.00                            0.14

0.5                           0.9

 
Figure 10.  Monte Carlo spectral unmixing results for the Jornada Experimental Range, New Mexico, USA, using tied-SWIR2 
AVIRIS imagery.  Top panels show mean cover fractions for PV, NPV and bare soil.  Bottom panels show standard deviation 
images for the three endmembers. 
  
The comparison indicated clear limitations in using the full optical range (0.4-2.5 µm) or visible-NIR (0.4-

1.3 µm) to decompose image pixels into PV, NPV and bare soil covers in an arid shrubland and grassland ecosystem 
(Table 2).  Shortwave-IR2 (SWIR2) measurements in the 2.0-2.3 µm range showed the distinctive differences in PV, 
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NPV and bare soil spectral properties.  When the SWIR2 spectra are normalized by tying each value to that of the 
first wavelength (2.03 µm), the distinctive shapes of the three endmembers are isolated and the effect of changing 
albedo is minimized.  These tied-SWIR2 endmembers provided verifiably accurate estimates of PV, NPV and bare 
soil in the shrubland and grassland study areas.  No other spectral combination or approach tested in this study could 
provide similar performance.  The tied-SWIR2 sampling provided by ASTER (5 channels; Table 1), provided some 
useful information on bare soil extent, but poor spectral coverage in the 2.0-2.15 µm range precluded an accurate 
NPV or a better bare soil estimate. 
  

In general, we believe that the SWIR2 spectral region is one of the best ways to estimate the fractional 
cover of photosynthetic vegetation, non-photosynthetic vegetatation, and bare soils in arid regions.  To date, only a 
few instruments, such as the AVIRIS, provide the SWIR2 spectral sampling with sufficiently high signal-to-noise 
ratio for use in our Monte Carlo mixture model.  Further testing and analysis of the SWIR2 region for analyzing the 
presence and abundance of these land surface materials will continue in our future efforts.  Ecological and 
biogeochemical research efforts at the landscape and regional scale require detailed information on the spatial and 
temporal variability of live vegetation, dry carbon, and bare soils.  Based on our studies thus far conducted, the 
SWIR2 spectral region continues to stand out as a potential means for providing these needed data. 
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Table 1.  Permutations of AVIRIS data used in Monte Carlo spectral mixture analysis of shrubland and grassland sites.  
The Landsat TM, MODIS and ASTER satellite instruments were simulated using the AVIRIS data convolved to actual 
sensor response functions.  Special treatment for bad bands and for normalizing various wavelength regions (tying and 
dividing) are also shown. 

Technique/Instrument Wavelength Region(s) Special Treatment 
   
AVIRIS Contiguous 0.4-2.5 µm, 168 channels Atmospheric water absorption bands (1.3-1.5 

µm and 1.8-2.0 µm) are ignored. 
AVIRIS VNIR Contiguous 0.4-1.3 µm, 98 channels --- 
AVIRIS SWIR2 Contiguous 2.0-2.3 µm, 45 channels --- 
AVIRIS 
Tied-SWIR2 

Contiguous 2.0-2.3 µm, 45 channels The value at the first wavelength at 2.03 µm 
is subtracted from the reflectance value at 
each wavelength. 

AVIRIS 
Divided-SWIR2 

Contiguous 2.0-2.3 µm, 45 channels The reflectance value at each wavelength is 
divided by value at the first wavelength at 
2.03 µm. 

Landsat 5 TM 0.48, 0.57, 0.66, 0.84, 1.68, 2.22 µm --- 
MODIS 0.41, 0.44, 0.46, 0.49, 0.52, 0.54, 0.55, 

0.66, 0.67, 0.74, 0.85, 0.90, 0.93, 0.94, 
1.2, 1.6, 2.1 µm 

--- 

ASTER 0.56, 0.66, 0.80, 1.7,  
2.16, 2.21, 2.26, 2.33, 2.39 µm 

--- 

ASTER 
Tied-SWIR2 

2.16, 2.21, 2.26, 2.33, 2.39 µm The value at the first wavelength at 2.16 µm 
reflectance is subtracted from the value at 
each wavelength. 

ASTER 
Divided-SWIR2 

2.16, 2.21, 2.26, 2.33, 2.39 µm The reflectance value at each wavelength is 
divided by value at the first wavelength at 
2.16 µm. 
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Table 2.  Summary of estimated photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV), 
and bare soil cover fractions from 10 different wavelength sampling analyses using AutoMCU.  
Fractional cover results from field measurements are also given.  Sums of the three fractions are also 
shown for each set of estimates. 

Permutation  Study Site 
   Shrubland Std Dev Grassland$ Std Dev 
FIELD MEASUREMENTS PV 0.181* 0.010* 0.069 0.033 
 NPV 0.010** 0.010** 0.367 0.133 
 Soil 0.820* 0.020* 0.586 0.173 
 SUM 1.01 --- 1.01 --- 

PV -0.006 0.060 -0.176 0.036 
NPV 0.019 0.043 0.325 0.031 

AVIRIS Full-range 
  
  Soil 1.053 0.036 0.795 0.036 
 SUM 1.06 --- 0.94 --- 
AVIRIS VNIR PV 0.006 0.044 -0.074 0.028 
 NPV 0.147 0.063 0.694 0.066 
  Soil 0.953 0.069 0.404 0.078 
 SUM 1.11 --- 1.02 --- 
AVIRIS SWIR2 (No tying) PV -0.531 0.107 -0.124 0.088 
 NPV 0.162 0.042 0.433 0.041 
  Soil 1.081 0.035 0.736 0.037 
 SUM 0.71 --- 1.05 --- 
AVIRIS Tied SWIR2 PV 0.148 0.062 0.129 0.057 
 NPV 0.013 0.034 0.326 0.038 
  Soil 0.839 0.050 0.548 0.060 
 SUM 1.0 --- 1.01 --- 
AVIRIS Divided SWIR2 PV 0.026 0.011 0.029 0.011 
 NPV 0.036 0.020 0.264 0.029 
  Soil 0.94 0.016 0.707 0.026 
 SUM 1.0 --- 1.01 --- 
Landsat TM PV 0.375 0.028 0.139 0.030 
  NPV 0.242 0.059 0.807 0.062 
  Soil 0.836 0.057 0.285 0.285 
 SUM 1.45 --- 1.23 --- 
MODIS PV -0.049 0.051 -0.222 0.032 
 NPV 0.234 0.040 0.570 0.053 
 Soil 0.947 0.041 0.642 0.038 
 SUM 1.13 --- 0.99 --- 
ASTER Full-range PV 0.023 0.041 -0.163 0.023 
 NPV -0.002 0.053 0.295 0.046 
 Soil 1.066 0.041 0.822 0.031 
 SUM 1.09 --- 0.95 --- 
ASTER Tied SWIR2 PV 0.271 0.195 0.271 0.205 
 NPV -0.187 0.172 0.127 0.167 
 Soil 0.916 0.068 0.609 0.072 
 SUM 1.0 --- 1.01 --- 
 
* From a combination of IKONOS (Figure 4) - uncertainty values given as ranges and not standard deviations;  ** 
From field observations; $ From Figure 3. 
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